
EDA and ML – A Perfect Pair for Large-Scale Data Analysis

Ryan Hafen, Terence Critchlow
Pacific Northwest National Laboratory

Richland, WA USA
 Ryan.Hafen@PNNL.gov, Terence.Critchlow@pnnl.gov

In this position paper, we discuss how Exploratory Data
Analysis (EDA) and Machine Learning (ML) can work
together in large-scale data analysis environments. In
particular, we describe how applying EDA techniques and ML
methods in a complementary fashion can be used to address
some of the challenges faced when applying ML techniques to
large, real world data sets, and discuss tools that help do the
job. This iterative approach is demonstrated with a simple
example of how extracting events from a historical sensor data
set was enabled by iteratively identifying and filtering various
types of erroneous data.

Keywords-exploratory data analyisis, machine learning,
large-data analysis

I. INTRODUCTION
 In this short position paper, we discuss how Exploratory

Data Analysis (EDA) and Machine Learning (ML) can work
together to enable effective large-scale data analysis. One of
the significant challenges applying ML to large data sets is
creating the training data, evaluating the results, and
determining how to refine the data to improve the
performance of the algorithm. While solutions to these
problems have been established on relatively small data sets,
overcoming them in the realm of big-data remains a
challenge. Recent advances in statistical computing
environments have allowed EDA techniques to transition
from small data sets into significantly larger ones. This
transition allows EDA to be used conjunction with ML to
address these challenges.

Section II provides a working description of EDA and
describes a typical EDA analysis environment. In Section
III, we describe recent advances that have made EDA
feasible for large data analysis scenarios. Section IV
describes how EDA and ML can be effectively combined to
provide an enhanced analytical environment. Finally, in
section V, an example of a large-scale analysis using this
combined approach is presented.

II. WHAT IS EDA?
 EDA is the interactive, hypothesis-driven exploration of

data. In this approach, analysis of the data is driven by a set
of questions and/or suspicions, but as the analysis proceeds,
results are examined not only to answer the original question,
but to potentially gain additional, possibly unexpected,
insights about the data – after exploring we have some
answers and more questions [1]. It is important to recognize
that the exploration is directed, based on the initial questions

being asked. “We explore data with expectations. We revise
our expectations based on what we see in the data. And we
iterate this process.” [2]

Because of the importance of the user’s direction, EDA is
greatly informed by domain expertise and domain-driven
models of how data should behave. It often plays an
important role in either confirming a priori expectations or
suggesting new hypotheses based on the data.

As John Tukey, the “father of EDA” points out,
“Exploratory data analysis is an attitude, a flexibility, and a
reliance on display, NOT a bundle of techniques.” [3].
However, in practice, the availability of good tools and
techniques is critical to the useful application of EDA to a
specific problem. In particular, both numerical and visual
methods are typically applied to the data to identify trends
and patterns as well as deviations from the expected patterns.
This requires tools that support iterative interaction with the
data, allows users to easily describe complex analytics, and
provides the ability to easily display analysis results.

A. Requirements for an EDA Environment
The quote from Tukey just cited highlights two important

aspects of EDA: flexibility and the reliance on display. Any
successful EDA environment must support both components.

EDA environments must be flexible. The EDA
approach to analysis is inherently iterative. The models or
algorithms that capture the salient features of the data are
inherently complex, and initial descriptions are never
complete. Typically, analysis begins with either simple
summaries or displays of the data. These provide insight into
the data, leading to new ideas. Algorithms to investigate the
validity of these new hypotheses are developed and
evaluated. These algorithms lead to new insights, and the
process is repeated. Inherent in a successful environment is
the ability to rapidly implement the method or methods in
order for the new idea to be examined. Thus, a successful
EDA environment must provide a high-level, interactive
language for data analysis that has direct support for
complex numerical, statistical, and machine learning
methods.

Visualization is critical in an EDA environment. EDA
requires a human to drive the data exploration process. It is
well documented that humans have an extraordinary ability
to identify patterns in complex data when presented with the
information through an appropriate visualization. Thus, the
most effective way for a human be of value in this loop is to
enable easy visualization of the analysis results. To
accomplish this, a successful EDA environment must

provide a flexible interface for creating a wide variety of
visualizations.

III. TOOLS FOR EDA WITH LARGE DATA
EDA principles have been successfully used for many

years [4], and several popular environments, including R [5]
and MatLab [6], have been developed. These environments
allow users to easily and interactively explore their data
using scripting languages developed exclusively to express
complex mathematical and statistical algorithms. R is
particularly popular because it is an open source project,
allowing the broad research community to contribute
thousands of specialized analysis packages. The supporting
ecosystem makes it easy to identify, import, and use
algorithms that perform every imaginable analysis task.

Until recently, R – and similar EDA environments – have
been limited to relatively small data sets because they require
the ability to analyze the entire data set in memory. To
facilitate the iterative process of EDA with large data, it is
important that methods can be applied at scale so that results
can be received in a reasonable amount of time. Fortunately,
recent research has advanced the current state of the art,
making EDA on multi-TB data sets feasible.

In this section, we introduce the R and Hadoop Integrated
Programming Environment (RHIPE) [7] that provides this
environment, and discuss some research efforts aimed at
scalable analytic and visualization methods based on this
platform.

A. RHIPE
RHIPE (pronounced hree-pay') is a merger of the R

statistical programming environment and the Hadoop
distributed processing system. RHIPE allows an analyst to
carry out analysis of complex big data wholly from within R,
using Hadoop to handle the distributed computing. RHIPE
provides a dynamic language for analysis of big data.

RHIPE is tightly integrated with Hadoop, providing
support for many Hadoop features, such as combiners,
custom partitioning, distributed cache, traditional
input/output formats such as map and sequence files, text
files, and HBase, as well as support for adding custom jars
for other input formats. Data is serialized using protocol
buffers, making it easy to share data with other applications.

The compute paradigm for Hadoop is MapReduce.
MapReduce provides a versatile high-level parallelization to
solve many data-intensive problems through use of user-
specified Map and Reduce functions, including many
statistical and machine learning algorithms [8]. In this
approach, an algorithm is split into a map component –
which performs an initial data processing step and outputs a
set of key-value pairs – and a reduce component – which
performs a second processing step on all values with the
same key. This two-step approach is relatively general, and
has been widely adopted by the data analysis community.

However, many algorithms that fall into the MapReduce
paradigm are not practically feasible, such as algorithms that
require several iterations or require large amounts of state
information to be saved between iterations [8]. Further,
many algorithms do not fit into the MapReduce paradigm at

all, for example certain graph analysis cannot be easily
translated to self-contained map and reduce steps, but rather
require communication across tasks.

Divide and Recombine (D&R) is a new statistical
approach to the analysis of large complex data [9] that seeks
to overcome some of the limitations of MapReduce. This
approach is similar to MapReduce in that data is divided into
subsets, analytic methods are applied to each subset in an
embarrassingly parallel manner, and the outputs of each
method are recombined to form a result for the entire data.
The key difference is in how the data subsets are generated.
Specifically, subsets are created such that the results of
applying a method independently to each subset can be
recombined (e.g. through averaging model coefficients) to
achieve a very good approximation to a global model fit.
Similar ideas are being researched [10]. The challenge is to
develop subsetting algorithms that will produce good results
while being sufficiently simpler than the analysis algorithm
being approximated. Assuming that the data can be
effectively subset, D&R allows a data analyst to apply
almost any existing statistical or visualization method to
large complex data. Current research in D&R is to develop
“best” division and recombination procedures for various
analytic methods.

B. Visualization Databases
As previously noted, EDA requires the ability to

visualize the analytical results. Additionally, for
comprehensive analysis of the data , it is important to be able
to visualize the data in detail. One approach to this is to
subset the data and examine a few subsets in detail. But this
may not be sufficient to identify patterns which would span
subsets or occur infrequently. In these cases, it is useful to
apply a visualization method to every subset, creating a
collection of “small multiples” [11] which spans the entire
data set. Viewing a collection of small multiples is effective
in revealing repetitions or changes, while allowing an analyst
to see the data at finer levels of detail. This visualization
approach has been an effective tool for many years and is
built in to many successful visualization software packages,
such as the lattice package for the R statistical computing
environment [12] and the underlying trellis framework [13].
A collection of small multiples is referred to as a single
display. Since many displays are created during analysis, an
effective way to manage them is required. This is the role of
a visualization database (VDB) [14].

This capability is particularly important when working
with large data sets since as the size or complexity of the
data increases, the number of small multiples increases
beyond the capacity of the human mind to simultaneously
capture the details and larger scale trends or patterns. If
these displays are stored and available for additional
analysis, it is possible to have the computer determine which
displays might be interesting [15]. This is accomplished
through calculating diagnostic quantities, or cognostics [16],
for each panel to provide a rank for its potential usefulness.
Cognostic quantities can be simple statistical quantities
(range, standard deviation, model coefficients) or can be
tailored to the visualization at hand to differentiate among

large numbers of panels with respect to context-relevant
attributes.

IV. USING EDA AND ML TOGETHER
There has been significant research in the area of

distributed algorithms for machine learning, leading to an
impressive collection of tools for large-scale data analysis.
Unfortunately, difficulties can arise when using these tools in
practice. In particular, with numerical methods alone, it can
be difficult to:

• identify and understand incorrect or anomalous
records within the data set that may be negatively
affecting the ML algorithm

• determine or understand the effectiveness of the
model that that ML algorithm has learned, and how to
change the model to provide better results

• interpret the scientific meaning or impact of the
algorithm results

As outlined below, EDA can be used to address these
concerns, forming a complementary cycle where EDA and
ML are performed iteratively.

A. Data Preparation and Identification of Incorrect Data
EDA naturally complements ML in the preprocessing

and cleaning stage. Environments suited to EDA, as outlined
previously, can be very helpful with tasks like getting the
data in the proper format, getting a “feel” for the data,
cleaning the data, performing feature selection, and
determining appropriate directions to take. Often these tasks
are pushed to the background, with all importance placed on
the learning stage. However, in the experience of
practitioners, these tasks constitute 80% of the effort that
determines 80% of the value of the ultimate results [17].
These tasks are typically thought of as a one-time up-front
cost, but in practical applications, they are ongoing efforts,
with ML algorithm results bringing new issues to light at
each iteration. In section V, we illustrate this point with an
example.

B. Understanding the Effectiveness of the ML Algorihtm
Often the overall classification accuracy or prediction

error metrics from a ML algorithm do not tell the whole
story. When focusing only on these metrics, we run the risk
of choosing the best performer from a class of poor
performers. Injecting EDA techniques into the process can
help provide insight into what regions of the design space are
performing well or poorly, and spark ideas for improvements
to ML algorithms. A little bit of strategy from the human
(EDA) can go a long way in helping the immense tactical
power of the machine (ML).

The benefit of EDA, however, is based on the ability of
the analyst to guide the process. This benefit is minimized
when the analyst is unable to guide the process, for example
because they are unfamiliar with the domain or unclear what
they are looking for. In this case, an unsupervised approach
is likely to generate a more useful model. This type of
approach is also likely to be more efficient when the features
that comprise the model are known in advance, since the
analyst would need to develop a similar model from scratch.

As EDA is a rather general approach, it is difficult to
prescribe a concrete set of steps that illustrate its use in this
context. However, in our experience we have noted the use
of exploratory techniques, primarily driven by visualization,
in helping to validate assumptions of the ML method being
applied, identify transformations that yield a far more
parsimonious model, identify interactions missed by the ML
method, and leverage domain expertise. The importance of
the use of EDA in the ML process is well-summarized by
Tukey: “How do we avoid analysis that the data before us
indicate should be avoided? By exploring the data-before,
during, and after analysis for hints, ideas, and, sometimes, a
few conclusions.” [3]

C. Interpreting Results
When the context of an analysis relates to scientific

discovery, the goal is not necessarily the prediction or
classification with the most accuracy, but a sound
understanding of the phenomena upon which the data is
based. In this case, we are most interested in building
interpretable models, checking if data supports hypothesized
models, and looking for new phenomena. The role of ML in
interpretable scientific discovery has been a topic of debate
[18], but we see ML methods as completely necessary here,
with EDA helping with the interpretation of results.

V. USE CASE
A detailed example of how EDA an ML can be iteratively

used to provide novel analytical results is outside the scope
of this paper. However, instead a simple use case
demonstrates how combining EDA based data cleaning with
event extraction can be used in a complementary fashion on
a realistic data set: specifically, given power grid sensor
data, identify and extract records detailing a specific type of
event, an islanding event, out of the data.

The data is a time series of sensor readings, from a
network of 38 sensors on a single network, each reporting a
set of values thirty times per second. Each record can be
thought of as a tuple (t, s, f, v) where t is the timestamp, s is
the sensor, f is a flag value indicating the sensor’s state, and
v is a vector of values reported by that sensor at the
specified time.

When operating normally, the network connects all
sensors. Given physical constraints, each sensor should
report closely related values in this case. Islanding occurs
when network connections are broken, and the network is
divided into two smaller, disconnected networks. In this
case, the sensors may report significantly different values if
they are on different partitions. A model was easily
developed that could identify islands within a simple test
data set. Unfortunately, when the model was applied to the
entire data set an unusually high number of islanding events
were detected.

EDA was used to determine why the model was not
performing as expected: the sensor data stream had
extremely high occurrences of erroneous data, leading the
model to generate incorrect results.

Starting with an initial collection of statistics, EDA was
then used to identify three distinct types of errors within the
data set: previously unknown flags (f) which indicated
sensor errors, sensors producing a single value, and sensors
generating white noise. The initial collection of erroneous
records was identified when error conditions, previously
unknown to local experts, were identified based on an
analysis that identified a 100% correlation between f and v.
The second set of erroneous records was identified when v
was unchanged for a length of time determined by a
statistical analysis of the data, flagging repeated sequences
of a length exceeding the extremities of the tail of a fitted
geometric distribution. The final set of records was defined
by those records where there is no significant
autocorrelation between values on a given sensor across a
small timescale. The interested reader is directed to [19] for
additional insight into this analysis. .

Determining the specific statistical models that identified
the erroneous data required iteratively computing and
analyzing statistical measures against the underlying data
set. This would typically begin with an analysis computed
against the entire data set using RHIPE, which would take
between 10 and 30 minutes. From there, we would identify
subsets of the data that appeared to be of interest – for
example, records with a specific flag value. These data
subsets were then extracted from the entire data set and
analyzed individually to determine if there was a pattern of
interest (e.g. a specific flag always had a certain value).
Once a potential pattern was identified, and defined as a
model, the model was validated by running it against the
entire data set and analyzing all instances identified by the
model. Once the model was validated, it could be used to
either filter the data stream in real time to improve down-
stream analysis tasks or filter the archived data as
appropriate for off-line analysis.

After each filter was developed, the event detection
model was re-run. The results from each run were then
analyzed using EDA to determine why there were more
events than expected. This iteration continued until the
results produced by the event detection model on the filtered
data was validated.

In our application, EDA was particularly useful because
it was impossible to describe in advance the patterns that
needed to be identified. For example, it would be extremely
unlikely to know in advance that sensors will occasionally
generate data that looks like white noise. Without this
pattern being known in advance, it is unlikely that training
sets for supervised learning algorithms will include
sufficient data for an algorithm to determine the pattern.
Similarly, if the pattern that represents the event is
unexpected, it may be outside the scope of what traditional
machine learning algorithms may be able to identify. Many
traditional algorithms would not generate correlation
measures both along a time series and across different time
series, which would have missed identifying some of our
erroneous records. Finally, in high-dimension space expert

insights can be critical in reducing the search space to a
manageable set of alternatives. For example, knowing that
our network should not remain constant for an extended
period of time, despite constant values happening
frequently, led to the identification of the appropriate
geometric distribution analysis that identifies when a sensor
is stuck.

VI. CONCLUSIONS
Traditional machine learning algorithms are effective at

identifying, classifying, and categorizing large-scale data sets
using complex statistical models. Unfortunately, training and
validating these models requires access to data subsets that
accurately represent the larger data set. Ensuring the model
has sufficient information to learn everything it needs to
know is a challenge unto itself. Exploratory data analysis
techniques can be used to address these concerns.
Historically, such interactive techniques have been excluded
from this domain because they were limited to small data
sets. This has changed with new, scalable EDA frameworks
such as RHIPE, which combine the flexibility of R and the
scalability of Hadoop. Based on our experience iteratively
validating event detection models, we believe that the
application of EDA techniques in combination with ML
provides the opportunity to overcome the limitations inherent
in both approach and provides better analytical results.

REFERENCES

[1] L. Wilkinson. The Impact of Tukey’s Exploratory Data Analysis,

Chicago chapter of the American Statistical Association Spring
Conference, May 5, 2000.

[2] L. Wilkinson, A. Anand, and R. Grossman. High-dimensional visual
analytics: Interactive exploration guided by pairwise views of point
distributions. Visualization and Computer Graphics, IEEE
Transactions on, 12(6):1363–1372, 2006.

[3] J. W. Tukey. We need both exploratory and confirmatory. American
Statistician, pages 23–25, 1980.

[4] J. W. Tukey. Exploratory Data Analysis. Addison-Wesley, Reading,
Massachusetts, U.S.A., 1977.

[5] R Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria,
2012. ISBN 3-900051-07-0.

[6] MATLAB version 7.10.0. Natick, Massachusetts: The MathWorks
Inc., 2010.

[7] RHIPE: www.rhipe.org
[8] C. T. Chu, S. K. Kim, Y. A. Lin, Y. Y. Yu, G. Bradski, A. Y. Ng, and

K. Olukotun. Map-reduce for machine learning on multicore.
Advances in neural information processing systems, 19:281, 2007.

[9] S. Guha, R. Hafen, J. Rounds, J. Xia, J. Li, B. Xi, and W. Cleveland.
Large complex data: divide and recombine (D&R) with rhipe. Stat,
1(1):53–67, 2012.

[10] Kleiner, A., Talwalkar, A., Sarkar, P., & Jordan, M. I. Bootstrapping
big data. Big Learn, 2011.

[11] E. Tufte, N. Goeler, and R. Benson. Envisioning information, volume
21. Graphics Press Cheshire, CT, 1990.

[12] D. Sarkar. Lattice: multivariate data visualization with R. Springer
Verlag, 2008.

[13] R. A. Becker, W. S. Cleveland, and M.-J. Shyu. The visual design
and control of trellis display. Journal of Computational and
Graphical Statistics, 5(2):123–155, 1996.

[14] S. Guha, P. Kidwell, R. P. Hafen, and W. S. Cleveland. Visualization
databases for the analysis of large complex datasets. In Proceedings
of the 12th International Conference on Artificial Intelligence and
Statistics (AISTATS), 2009.

[15] J. Friedman and W. Stuetzle. John W. Tukey’s work on interactive
graphics. Annals of Statistics, pages 1629–1639, 2002.

[16] W. S. Cleveland. The Collected Works of John W. Tukey: Graphics
1965-1985, volume 5. Chapman & Hall/CRC, 1988.

[17] T. Dasu and T. Johnson. Exploratory data mining and data cleaning.
Vol. 442. Wiley-Interscience, 2003.

[18] L. Breiman. “Statistical modeling: The two cultures (with comments
and a rejoinder by the author).” Statistical Science 16.3 (2001): 199-
231.

[19] R. Hafen, T. Gibson, K. Kleese van Dam, and T. Critchlow. Data
Mining Applications with R, chapter Power Grid Data Analysis with
R and Hadoop. Elsevier, In print.

