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In this position paper, we discuss how Exploratory Data 
Analysis (EDA) and Machine Learning (ML) can work 
together in large-scale data analysis environments. In 
particular, we describe how applying EDA techniques and ML 
methods in a complementary fashion can be used to address 
some of the challenges faced when applying ML techniques to 
large, real world data sets, and discuss tools that help do the 
job. This iterative approach is demonstrated with a simple 
example of how extracting events from a historical sensor data 
set was enabled by iteratively identifying and filtering various 
types of erroneous data.   
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I.  INTRODUCTION  
 In this short position paper, we discuss how Exploratory 

Data Analysis (EDA) and Machine Learning (ML) can work 
together to enable effective large-scale data analysis. One of 
the significant challenges applying ML to large data sets is 
creating the training data, evaluating the results, and 
determining how to refine the data to improve the 
performance of the algorithm. While solutions to these 
problems have been established on relatively small data sets, 
overcoming them in the realm of big-data remains a 
challenge. Recent advances in statistical computing 
environments have allowed EDA techniques to transition 
from small data sets into significantly larger ones. This 
transition allows EDA to be used conjunction with ML to 
address these challenges.   

Section II provides a working description of EDA and 
describes a typical EDA analysis environment.  In Section 
III, we describe recent advances that have made EDA 
feasible for large data analysis scenarios. Section IV 
describes how EDA and ML can be effectively combined to 
provide an enhanced analytical environment. Finally, in 
section V, an example of a large-scale analysis using this 
combined approach is presented.  

II. WHAT IS EDA?  
 EDA is the interactive, hypothesis-driven exploration of 

data. In this approach, analysis of the data is driven by a set 
of questions and/or suspicions, but as the analysis proceeds, 
results are examined not only to answer the original question, 
but to potentially gain additional, possibly unexpected, 
insights about the data – after exploring we have some 
answers and more questions [1].  It is important to recognize 
that the exploration is directed, based on the initial questions 

being asked. “We explore data with expectations. We revise 
our expectations based on what we see in the data. And we 
iterate this process.” [2] 

Because of the importance of the user’s direction, EDA is 
greatly informed by domain expertise and domain-driven 
models of how data should behave. It often plays an 
important role in either confirming a priori expectations or 
suggesting new hypotheses based on the data.   

As John Tukey, the “father of EDA” points out, 
“Exploratory data analysis is an attitude, a flexibility, and a 
reliance on display, NOT a bundle of techniques.” [3]. 
However, in practice, the availability of good tools and 
techniques is critical to the useful application of EDA to a 
specific problem. In particular, both numerical and visual 
methods are typically applied to the data to identify trends 
and patterns as well as deviations from the expected patterns. 
This requires tools that support iterative interaction with the 
data, allows users to easily describe complex analytics, and 
provides the ability to easily display analysis results. 

A. Requirements for an EDA Environment 
The quote from Tukey just cited highlights two important 

aspects of EDA: flexibility and the reliance on display.  Any 
successful EDA environment must support both components.   

EDA environments must be flexible. The EDA 
approach to analysis is inherently iterative.  The models or 
algorithms that capture the salient features of the data are 
inherently complex, and initial descriptions are never 
complete.  Typically, analysis begins with either simple 
summaries or displays of the data. These provide insight into 
the data, leading to new ideas. Algorithms to investigate the 
validity of these new hypotheses are developed and 
evaluated. These algorithms lead to new insights, and the 
process is repeated.  Inherent in a successful environment is 
the ability to rapidly implement the method or methods in 
order for the new idea to be examined. Thus, a successful 
EDA environment must provide a high-level, interactive 
language for data analysis that has direct support for 
complex numerical, statistical, and machine learning 
methods.   

Visualization is critical in an EDA environment. EDA 
requires a human to drive the data exploration process. It is 
well documented that humans have an extraordinary ability 
to identify patterns in complex data when presented with the 
information through an appropriate visualization. Thus, the 
most effective way for a human be of value in this loop is to 
enable easy visualization of the analysis results.  To 
accomplish this, a successful EDA environment must 



provide a flexible interface for creating a wide variety of 
visualizations. 

III. TOOLS FOR EDA WITH LARGE DATA 
EDA principles have been successfully used for many 

years [4], and several popular environments, including R [5] 
and MatLab [6], have been developed. These environments 
allow users to easily and interactively explore their data 
using scripting languages developed exclusively to express 
complex mathematical and statistical algorithms. R is 
particularly popular because it is an open source project, 
allowing the broad research community to contribute 
thousands of specialized analysis packages. The supporting 
ecosystem makes it easy to identify, import, and use 
algorithms that perform every imaginable analysis task.  

Until recently, R – and similar EDA environments – have 
been limited to relatively small data sets because they require 
the ability to analyze the entire data set in memory. To 
facilitate the iterative process of EDA with large data, it is 
important that methods can be applied at scale so that results 
can be received in a reasonable amount of time.  Fortunately, 
recent research has advanced the current state of the art, 
making EDA on multi-TB data sets feasible.  

In this section, we introduce the R and Hadoop Integrated 
Programming Environment (RHIPE) [7] that provides this 
environment, and discuss some research efforts aimed at 
scalable analytic and visualization methods based on this 
platform. 

A. RHIPE 
RHIPE (pronounced hree-pay') is a merger of the R 

statistical programming environment and the Hadoop 
distributed processing system.  RHIPE allows an analyst to 
carry out analysis of complex big data wholly from within R, 
using Hadoop to handle the distributed computing.  RHIPE 
provides a dynamic language for analysis of big data. 

RHIPE is tightly integrated with Hadoop, providing 
support for many Hadoop features, such as combiners, 
custom partitioning, distributed cache, traditional 
input/output formats such as map and sequence files, text 
files, and HBase, as well as support for adding custom jars 
for other input formats.  Data is serialized using protocol 
buffers, making it easy to share data with other applications.  

The compute paradigm for Hadoop is MapReduce.  
MapReduce provides a versatile high-level parallelization to 
solve many data-intensive problems through use of user-
specified Map and Reduce functions, including many 
statistical and machine learning algorithms [8].  In this 
approach, an algorithm is split into a map component – 
which performs an initial data processing step and outputs a 
set of key-value pairs – and a reduce component – which 
performs a second processing step on all values with the 
same key. This two-step approach is relatively general, and 
has been widely adopted by the data analysis community.  

However, many algorithms that fall into the MapReduce 
paradigm are not practically feasible, such as algorithms that 
require several iterations or require large amounts of state 
information to be saved between iterations [8].  Further, 
many algorithms do not fit into the MapReduce paradigm at 

all, for example certain graph analysis cannot be easily 
translated to self-contained map and reduce steps, but rather 
require communication across tasks.   

Divide and Recombine (D&R) is a new statistical 
approach to the analysis of large complex data [9] that seeks 
to overcome some of the limitations of MapReduce.  This 
approach is similar to MapReduce in that data is divided into 
subsets, analytic methods are applied to each subset in an 
embarrassingly parallel manner, and the outputs of each 
method are recombined to form a result for the entire data.  
The key difference is in how the data subsets are generated. 
Specifically, subsets are created such that the results of 
applying a method independently to each subset can be 
recombined (e.g. through averaging model coefficients) to 
achieve a very good approximation to a global model fit.  
Similar ideas are being researched [10].  The challenge is to 
develop subsetting algorithms that will produce good results 
while being sufficiently simpler than the analysis algorithm 
being approximated. Assuming that the data can be 
effectively subset, D&R allows a data analyst to apply 
almost any existing statistical or visualization method to 
large complex data. Current research in D&R is to develop 
“best” division and recombination procedures for various 
analytic methods. 

B. Visualization Databases 
As previously noted, EDA requires the ability to 

visualize the analytical results. Additionally, for 
comprehensive analysis of the data , it is important to be able 
to visualize the data in detail.  One approach to this is to 
subset the data and examine a few subsets in detail.  But this 
may not be sufficient to identify patterns which would span 
subsets or occur infrequently.  In these cases, it is useful to 
apply a visualization method to every subset, creating a 
collection of “small multiples” [11] which spans the entire 
data set.  Viewing a collection of small multiples is effective 
in revealing repetitions or changes, while allowing an analyst 
to see the data at finer levels of detail.  This visualization 
approach has been an effective tool for many years and is 
built in to many successful visualization software packages, 
such as the lattice package for the R statistical computing 
environment [12] and the underlying trellis framework [13].  
A collection of small multiples is referred to as a single 
display. Since many displays are created during analysis, an 
effective way to manage them is required. This is the role of 
a visualization database (VDB) [14]. 

This capability is particularly important when working 
with large data sets since as the size or complexity of the 
data increases, the number of small multiples increases 
beyond the capacity of the human mind to simultaneously 
capture the details and larger scale trends or patterns.  If 
these displays are stored and available for additional 
analysis, it is possible to have the computer determine which 
displays might be interesting [15].  This is accomplished 
through calculating diagnostic quantities, or cognostics [16], 
for each panel to provide a rank for its potential usefulness.  
Cognostic quantities can be simple statistical quantities 
(range, standard deviation, model coefficients) or can be 
tailored to the visualization at hand to differentiate among 



large numbers of panels with respect to context-relevant 
attributes. 

IV. USING EDA AND ML TOGETHER 
There has been significant research in the area of 

distributed algorithms for machine learning, leading to an 
impressive collection of tools for large-scale data analysis. 
Unfortunately, difficulties can arise when using these tools in 
practice. In particular, with numerical methods alone, it can 
be difficult to: 

• identify and understand incorrect or anomalous 
records within the data set that may be negatively 
affecting the ML algorithm  

• determine or understand the effectiveness of the 
model that that ML algorithm has learned, and how to 
change the model to provide better results  

• interpret the scientific meaning or impact of the 
algorithm results 

As outlined below, EDA can be used to address these 
concerns, forming a complementary cycle where EDA and 
ML are performed iteratively.  

A. Data Preparation and Identification of Incorrect Data 
EDA naturally complements ML in the preprocessing 

and cleaning stage.  Environments suited to EDA, as outlined 
previously, can be very helpful with tasks like getting the 
data in the proper format, getting a “feel” for the data, 
cleaning the data, performing feature selection, and 
determining appropriate directions to take.  Often these tasks 
are pushed to the background, with all importance placed on 
the learning stage.  However, in the experience of 
practitioners, these tasks constitute 80% of the effort that 
determines 80% of the value of the ultimate results [17].  
These tasks are typically thought of as a one-time up-front 
cost, but in practical applications, they are ongoing efforts, 
with ML algorithm results bringing new issues to light at 
each iteration.  In section V, we illustrate this point with an 
example. 

B. Understanding the Effectiveness of the ML Algorihtm 
Often the overall classification accuracy or prediction 

error metrics from a ML algorithm do not tell the whole 
story.  When focusing only on these metrics, we run the risk 
of choosing the best performer from a class of poor 
performers.  Injecting EDA techniques into the process can 
help provide insight into what regions of the design space are 
performing well or poorly, and spark ideas for improvements 
to ML algorithms.  A little bit of strategy from the human 
(EDA) can go a long way in helping the immense tactical 
power of the machine (ML).   

The benefit of EDA, however, is based on the ability of 
the analyst to guide the process. This benefit is minimized 
when the analyst is unable to guide the process, for example 
because they are unfamiliar with the domain or unclear what 
they are looking for. In this case, an unsupervised approach 
is likely to generate a more useful model. This type of 
approach is also likely to be more efficient when the features 
that comprise the model are known in advance, since the 
analyst would need to develop a similar model from scratch. 

As EDA is a rather general approach, it is difficult to 
prescribe a concrete set of steps that illustrate its use in this 
context.  However, in our experience we have noted the use 
of exploratory techniques, primarily driven by visualization, 
in helping to validate assumptions of the ML method being 
applied, identify transformations that yield a far more 
parsimonious model, identify interactions missed by the ML 
method, and leverage domain expertise. The importance of 
the use of EDA in the ML process is well-summarized by 
Tukey: “How do we avoid analysis that the data before us 
indicate should be avoided? By exploring the data-before, 
during, and after analysis for hints, ideas, and, sometimes, a 
few conclusions.” [3] 

C. Interpreting Results 
When the context of an analysis relates to scientific 

discovery, the goal is not necessarily the prediction or 
classification with the most accuracy, but a sound 
understanding of the phenomena upon which the data is 
based.  In this case, we are most interested in building 
interpretable models, checking if data supports hypothesized 
models, and looking for new phenomena.  The role of ML in 
interpretable scientific discovery has been a topic of debate 
[18], but we see ML methods as completely necessary here, 
with EDA helping with the interpretation of results. 

V. USE CASE  
A detailed example of how EDA an ML can be iteratively 

used to provide novel analytical results is outside the scope 
of this paper. However, instead a simple use case 
demonstrates how combining EDA based data cleaning with 
event extraction can be used in a complementary fashion on 
a realistic data set: specifically, given power grid sensor 
data, identify and extract records detailing a specific type of 
event, an islanding event, out of the data.  

The data is a time series of sensor readings, from a 
network of 38 sensors on a single network, each reporting a 
set of values thirty times per second. Each record can be 
thought of as a tuple (t, s, f, v) where t is the timestamp, s is 
the sensor, f is a flag value indicating the sensor’s state, and 
v is a vector of values reported by that sensor at the 
specified time.  

When operating normally, the network connects all 
sensors. Given physical constraints, each sensor should 
report closely related values in this case. Islanding occurs 
when network connections are broken, and the network is 
divided into two smaller, disconnected networks. In this 
case, the sensors may report significantly different values if 
they are on different partitions. A model was easily 
developed that could identify islands within a simple test 
data set. Unfortunately, when the model was applied to the 
entire data set an unusually high number of islanding events 
were detected.  

EDA was used to determine why the model was not 
performing as expected: the sensor data stream had 
extremely high occurrences of erroneous data, leading the 
model to generate incorrect results.  



Starting with an initial collection of statistics, EDA was 
then used to identify three distinct types of errors within the 
data set: previously unknown flags (f) which indicated 
sensor errors, sensors producing a single value, and sensors 
generating white noise. The initial collection of erroneous 
records was identified when error conditions, previously 
unknown to local experts, were identified based on an 
analysis that identified a 100% correlation between f and v.  
The second set of erroneous records was identified when v 
was unchanged for a length of time determined by a 
statistical analysis of the data, flagging repeated sequences 
of a length exceeding the extremities of the tail of a fitted 
geometric distribution. The final set of records was defined 
by those records where there is no significant 
autocorrelation between values on a given sensor across a 
small timescale. The interested reader is directed to [19] for 
additional insight into this analysis. . 

Determining the specific statistical models that identified 
the erroneous data required iteratively computing and 
analyzing statistical measures against the underlying data 
set. This would typically begin with an analysis computed 
against the entire data set using RHIPE, which would take 
between 10 and 30 minutes. From there, we would identify 
subsets of the data that appeared to be of interest – for 
example, records with a specific flag value. These data 
subsets were then extracted from the entire data set and 
analyzed individually to determine if there was a pattern of 
interest (e.g. a specific flag always had a certain value). 
Once a potential pattern was identified, and defined as a 
model, the model was validated by running it against the 
entire data set and analyzing all instances identified by the 
model.  Once the model was validated, it could be used to 
either filter the data stream in real time to improve down-
stream analysis tasks or filter the archived data as 
appropriate for off-line analysis. 

After each filter was developed, the event detection 
model was re-run. The results from each run were then 
analyzed using EDA to determine why there were more 
events than expected. This iteration continued until the 
results produced by the event detection model on the filtered 
data was validated.  

In our application, EDA was particularly useful because 
it was impossible to describe in advance the patterns that 
needed to be identified. For example, it would be extremely 
unlikely to know in advance that sensors will occasionally 
generate data that looks like white noise. Without this 
pattern being known in advance, it is unlikely that training 
sets for supervised learning algorithms will include 
sufficient data for an algorithm to determine the pattern. 
Similarly, if the pattern that represents the event is 
unexpected, it may be outside the scope of what traditional 
machine learning algorithms may be able to identify. Many 
traditional algorithms would not generate correlation 
measures both along a time series and across different time 
series, which would have missed identifying some of our 
erroneous records.  Finally, in high-dimension space expert 

insights can be critical in reducing the search space to a 
manageable set of alternatives. For example, knowing that 
our network should not remain constant for an extended 
period of time, despite constant values happening 
frequently, led to the identification of the appropriate 
geometric distribution analysis that identifies when a sensor 
is stuck. 

VI. CONCLUSIONS 
Traditional machine learning algorithms are effective at 

identifying, classifying, and categorizing large-scale data sets 
using complex statistical models. Unfortunately, training and 
validating these models requires access to data subsets that 
accurately represent the larger data set. Ensuring the model 
has sufficient information to learn everything it needs to 
know is a challenge unto itself. Exploratory data analysis 
techniques can be used to address these concerns. 
Historically, such interactive techniques have been excluded 
from this domain because they were limited to small data 
sets. This has changed with new, scalable EDA frameworks 
such as RHIPE, which combine the flexibility of R and the 
scalability of Hadoop. Based on our experience iteratively 
validating event detection models, we believe that the 
application of EDA techniques in combination with ML 
provides the opportunity to overcome the limitations inherent 
in both approach and provides better analytical results.  
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