Chapter 1
About Trellis Graphics

Making graphsis very basic to data analysis. Whether you use the leading
edge of statistical methods, or whether you want to quickly see the main
features of your data, graphs are amust. They are the single most powerful
class of toolsfor analyzing data.

Trellis Graphics is a new system for making graphs, written using the
core S-PLUS graphics functions. The Trellis software has many exciting
features, some of them quite glitzy, but the true measure of a visualization
systemishow much it enablesyouto learn from your data. So in thischapter
we will begin with two sets of data. Then we will discuss features.
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1.1 Discoveringthe MorrisMistake

Figure1.1isaTrellisdisplay of datafrom an agricultural field trial to study
the crop barley. At six sitesin Minnesota, ten varieties of barley were grown
in each of two years. The data are the yields for all combinations of site,
variety, and year, so there are 6 x 10 x 2 = 120 observations. In figure 1.1,
each panel displaysthe 20 yields at asingle site.

The barley experiment was run in the 1930s. The data first appeared
in a 1934 report published by the experimenters. Since then, the data have
been analyzed and re-analyzed. R. A. Fisher presented the data for five of
the sitesin his classic book, The Design of Experiments. Publication in the
book made the data famous, and many others subsequently analyzed them,
usually to illustrate a new statistical method.

Then in the early 1990s, the data were visualized by Trellis Graphics.
The result was a big surprise. Through 60 years and many analyses, an
important happening in the data had gone undetected. Figure 1.1 shows the
happening, which occurs at Morris. For al other sites, 1931 produced a
significantly higher overall yield than 1932. The reverse is true at Morris.
But most importantly, the amount by which 1932 exceeds 1931 at Morrisis
similar to the amounts by which 1931 exceeds 1932 at the other sites. Either
an extraordinary natural event, such as disease or aloca weather anomaly,
produced a strange coincidence, or the years for Morris were inadvertently
reversed. More Trellisdisplays, a statistical modeling of the data, and some
background checks on the experiment led to the conclusion that the data
arein error. But it was Trellis displays such as figure 1.1 that provided the
“Ahal” which led to the conclusion.
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Figure 1.1: Discovering the Morris mistake.
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1.2 Seeingthe Sunspot Cycles

The top panel of figure 1.2 graphsthe yearly sunspot numbers from 1849 to
1924. The aspect ratio, the height of the data region of the graph divided by
the width, is 1.0. An aspect ratio of 1.0 iswhat you might expect to see as
adefault in cases where aspect ratio has not been considered. But the graph
failsto revea an important property of the cycles. In the bottom panel, the
data are graphed again, but this time the aspect ratio has been chosen by an
algorithm in Trellis Graphics called banking to 45°. Now the property is
revealed. The sunspot cycles typically rise more rapidly than they fall; this
behavior is pronounced for the cycles with high peaks, is less pronounced
for those with medium peaks, and disappears for those cycles with the |ow-
est peaks. In thetop panel, the aspect ratio of 1.0 prevents an accurate visual
decoding of the slopes of the line segments connecting successive observa
tions. In the bottom panel, banking allows a more accurate visual decoding
of the slopes.
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Figure 1.2: Seeing the sunspot cycles.
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1.3 TrédlisFeatures

Trellis Graphics is a large leap forward in helping you to understand the
structure of your data, to understand the properties of models fitted to your
data, and to understand how well such models describe the structure of your
data. Here are afew of its many new features.

Multipanel Conditioning

Figure 1.1 illustratesmultipanel conditioning: each panel of the figure shows
the dependence of yield on variety, conditional on year and site. Multipanel
conditioning is an exceptionally powerful visualization tool for studying
the dependence of a response on two or more explanatory variables. It is
particularly effective for ferreting out interactions. The panels are laid out
into columns, rows, and pages. Figure 1.1 has only one page, but for large
datasets, conditioning can result in alarge number of panels, so more than
one page is needed. Thislayout of panelsis reminiscent of agarden trellis-
work, and hence, the name “Trellis’” Graphics.

Banking to 45°

Selecting the aspect ratio, or shape, of a graph to maximize the accuracy of
our visual decoding of information was an outstanding problem of statistical
graphicsfor decades. The solution, abreakthrough in data display, has been
implemented in Trellis Graphics. Banking to 45° chooses the aspect ratio
to center the absolute values of the slopes of selected line segments on 45°.
Perceptual experiments have shown that this maximizes the accuracy of our
visual decoding of the relative values of the slopes.

Automation

Trellis Graphics employs automation methods that save you time by auto-
matically selecting rendering aspects—for example, multipanel layout, line
types, plotting symbols, colors, and character sizes—to achieve effective
visual perception of the structure of data. These automation methods are
tuned to the graphics device you are using.
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Tailoring Trellis Displaysto Your Data

Still, even though our automation methods work well, you will want to alter
displays.

You can ater what goes in the data region of your graph by altering
a panel function, a simple procedure that describes what the panel display
method should be. And you can alter panel functionsto produce completely
new types of displaystailored to the needs of your data.

You have very delicate control over labels and scalesif you need it. Yet
this control isdirect and easy to exert.

1.4 Trellisand the Core S-PLUS Graphics

The core S-PLUS graphics is a collection of low-level drawing functions
and graphics parameter settings. The low-level functions draw graphical
elements. For example, points (), drawsplotting symbolsand 1ines ()
draws lines. The parameter settings govern the details of how graphical
elements are rendered. For example, pch = "+" setsthe plotting symbol
to aplussign.

Trellis Graphics employs the core graphics in two ways. First, Trellis
has been implemented using the core graphics. Second, when you write a
panel function to tailor the display to your data, you use features of the core
graphics; typically, these are very simplefeatures, considerably simpler than
the Trellisimplementation, which used just about every feature of the core.

1.5 Trellisvs. the Old S-PLUS Graphics

Sincethevery beginning of S-PLUS there has been acollection of high-level
graphics functions that are used to display graphs. Examplesare plot (),
ganorm (), and persp (). Theseroutines, like Trellis Graphics, are aso
implemented using the core graphics.

Trellis Graphics provides more functionality than the old high-level ca-
pabilities, there are many new ways to display data, such as multipanel
conditioning. It has also greatly improved some of the old display meth-
ods. For example, wireframe () does a better job of 3-D rendering than
persp (). Trellis Graphics aso has a better mechanism for the details of
rendering graphs—aspect ratio, plotting symbols, colors, line types, panel
layouts, coordinated scales on different graphs, and so forth. The defaults
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work better and users can now make changes with much more effective and
predictable results.



Chapter 3
Getting Started

3.1 trelis.device()

You need to have a graphics device on which to draw. If you have not
specified a device, but you execute a function that draws a graph, then a
color screen device is automatically set up for you.

The two devices that come up automatically can aso be specified di-
rectly withtrellis.device (). On Windowsthe commandis

trellis.device (win.graph)
On UNIX the command is

trellis.device (motif)

For some UNIX systems, there is another screen device, openlook.

You can send Trellis graphs to a printer. Also, you can set up multiple
devices; for example, you might have two devicesthat are graphicswindows
on your screen and one device that is a printer. Information is given about
thisin chapter 11.

WARNING: If you have used the old S-PLUS graphics, then you will
know that you set up devicesin adifferent way. For example, on Windows,
you set up the screen device by

win.graph ()

If you do this by mistake, you will find the Trellis graphs are not ren-
dered nearly as well because the graphical parameters of the core SPLUS
graphics will not be customized to the device as they are when you use
trellis.device().

13
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3.2 dev.off()

You turn off a graphics device by the function
dev.off ()

or just be quitting from S-PLUS.

3.3 TréelisObjects: print.trellis() and update()

Trellis display functions return objects of class trellis. The expression

xyplot (formula = gas$NOx gass$E)

draws a graph on the graphics device. The expression
foo <- xyplot (formula = gas$SNOx ~ gassSE)
savesthe graph in foo but does not draw it. If you then type
foo

the graph is drawn.

It isthe print method for trellis objectsthat sendsagraph to adevice. For
the example just given, typing foo causes SSPLUS to use print (foo)
to display the graph. The reason for mentioning thisisthat you must some-
times explicitly use print (£oo)—when the graph is made from a func-
tion or from a sourcefile.

Having graphs stored as obj ects can make changing a display much sim-
pler, especially when the display goes through a series of small changes, a
frequent occurrence since data display is relentlessly iterative. The function
update () changes Trellis objects. For example,

foo <- update(foo, main = "Dependence of NOx on E")

adds a title to the graph stored earlier in foo and stores the result back in
foo.
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3.4 ExampleFunctions

The example functions in the Trellis library draw displays to show you the
Trelliscapabilitiesand abit about how Trellisworks. Theword example.
beginsthe names of all of the examplefunctions. Figure 3.1 showstheresult
of executing one of these functions:

example.normal.qgqg ()
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3.5 Online Documentation

The online help for Trellis Graphics contains alot of detail. Thereisonline
help for any function in this Manual. For example,

?xyplot

documents xyplot (). The general display functions discussed in chap-
ter 7 have many common arguments, so thereis special online help for these
arguments. Use

?trellis.args
to get information about arguments for the 2-D displays, and
?trellis.3d.args

to see argument help for the 3-D displays. Finally, you can see alist of all
of the example functions using the online help:

?trellis.examples
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Chapter 4

A Roadmap of Trellis Graphics

4.1 General Display Functions

The Trellis library has a collection of general display functions that draw
different types of graphs. For example, xyplot () makes x-y plots,
dotplot () makes dot plots, and wireframe () makes 3-D wireframe
displays. The functions are general because they have the full capability of
Trellis Graphics including multipanel conditioning.

The general display functions are introduced in chapter 7.

4.2 Common Arguments

There are a set of common arguments that all general display functions em-
ploy. The usage of some of these arguments varies, but each has a common
purpose across al functions. Many of the general display functions also
have arguments that are specific to the types of graphs that they draw.

The common arguments, which appear in the Table of Contents, are
discussed in many chapters.

4.3 Pane Functions

Panel functions are a critical aspect of Trellis Graphics. They make it easy
to tailor displaysto your data even when the displays are quite complicated
ones with many panels.

The data region of a panel on a graph resulting from a general display
function is a rectangle that just encloses the data. The sole responsibility
for drawing in adata region is given to a panel function that is an argument

19
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of the general display function. The other arguments of the general dis-
play function manage the superstructure of the graph—scales, |abels, boxes
around the data region, and keys. The panel function manages the symbols,
lines, and so forth that encode the data in the data regions.

Panel functions are discussed in chapter 12.

4.4 CoreSPLUSGraphics

Trellis Graphics is implemented in the core S-PLUS graphics. Also, when
you write a panel function you use functions and graphics parameters from
the core.

Some Core S-PLUS graphics features are discussed in chapter 12.

4.5 Devicesand Settings

You need an output device to see a graph. The specification of a screen
device wasintroduced in chapter 3. Of course, you also want to send graphs
to printers and to files. Trellis Graphics alows you to do thisin many ways.

Sending graphsto files and printersis discussed in chapter 11.

Trellis Graphics has many settings for graph rendering details—pl otting
symbols, colors, line types and so forth— that are automatically chosen
depending on the device you select.

Chapter 13 discussesthe Trellis settings.

4.6 Data Structures

The general display functions take in data just like many of the SPLUS
modeling functions such as 1m (), aov (), glm(), and loess (). This
means that there is a heavy reliance on data frames. The Tréllis library
contains several functions that change data structures of certain typesto a
data frame, which makes it easier to pass the data on to the general display
functions (or, in fact, on to the modeling functions).

Chapter 15 discusses these functions that create data frames.



Chapter 5

Giving Data to General Display
Functions

For a graphics function to draw a graph, it needs to know the data on which
the drawing isbased. This chapter is about argumentsto the Trellis drawing
functions that allow you to specify the data.

21
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5.1 A Data Set: gas

The data frame gas contains two variables from an industrial experiment
with 22 runs in which the concentrations of oxides of nitrogen (NOX) in
the exhaust of an engine were measured for different settings of equivalence
ratio (E).

> names (gas)
[1] "NOx" "E"
> dim(gas)
[1] 22 2

5.2 formula=

The function xyplot () makesan x-y plot, agraph of two numerical vari-
ables; the result might be scattered points, curves, or both. xyplot () has
its own section in chapter 7, but for now we will use it to illustrate how to
specify data.

Figure 5.1 is a scatterplot of gas$SNOx against gasSE:

xyplot (formula = gass$NOx ~ gasS$SE)

The argument formula= specifies the variables that are to be graphed. In
this case they are gas$NOx and gassSE. For xyplot (), the variable to
the left of the ~ goes on the vertical axis, and the variable to the right of the
~ goeson the horizontal axis. Theformulagas$NOx ~ gasSEisread as
gas$NOx “isgraphed against” gassE.
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Theuse of formula= hereisthe sameasthat inthe S-PLUS statistical
modeling functions such as 1m and aov. To the left or right of the ~ you
can use any S-PLUS expression. For example, if you want to graph the log
base 2 of gas$NOx, you can use the formula

log (gas$sNOx,base=2) ~ gasSE

The argument formula= is a special one in Trellis Graphics. It is
alwaysthefirst argument of a general display function such asxyplot ().
We can omit typing formula= provided the formulais the first argument.
Thus the expression

xyplot (gas$NOx ~ gasS$SE)

also produces figure 5.1. formula= isthe only argument that should be
given by position; all others must be given by name.

Certain single-symbol operators that perform functionsin S-PLUS have
a specia meaning in the formula language (e.g., +, *, /, |, and :), a-
though Trellis, as we will see, usesonly * and |. If you want to use any of
these operators for their conventional meaning in any formula expression—
for example, if you want to use * as multiplication—you must put the ex-
pression inside the identity function I () unlessit is aready given as an
argument to afunction. Hereis an example:

log (2*gas$SNOx,base=2) 7 I(2*gasSE)

WeuseI () ontheright of theformulato protect against the * in 2 *gassSE,
but not on the left because 2 *gas$NOx sitsinside a function.

5.3 data=

One annoyancein the use of the aboveformulasisthat we had to continually
refer to the data frame gas. Thisis not necessary if we attach gas to the
search list of databases. We can draw figure 5.1 by

attach (gas)
xyplot (NOx ~ E)

Another possibility isto use the argument data-=:

xyplot (NOx E, data = gas)

In this case, the variables of gas are available for use in formula= just
during the execution of xyplot (). The effect isthe same as
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attach(gas)
xyplot (NOx ~ E)
detach (gas)

The use of data= has another benefit. In the call to xyplot () we see
explicitly that the dataframe gas is being used; this can be helpful for un-
derstanding, at some future point, how the graph was produced.
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5.4 subset=

Suppose you want to redo figure 5.1 and omit the observations for which E
is1.1 or greater. You could do this by

xyplot (NOx[E < 1.1] T E[E < 1.1], data = gas)

But it is a nuisance to repeat the logical subsetting, E < 1.1. And the
nuisance would be much greater if there were many variablesin theformula
instead of just two. It is typically easier to use the argument subset=
instead:

xyplot (NOx E, data = gas, subset = E < 1.1)

Theresult isshown in figure 5.2. The argument subset= can be alogical
or numerical vector.
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5.5 DataFrames

You can keep variables as vectors and draw Trellis displays without using
data frames. Still, data frames are very convenient. But datasets are often
stored, at least initially, in data structures other than data frames, so we need
ways to go from data structures of various types to data frames. Functions
to do this are discussed in Chapter 15.



Chapter 6
Aspect Ratio

6.1 The Aspect Ratio of a Graph is a Critical
Factor

The aspect ratio of a graph, the height of a panel data region divided by
its width, is acritical factor in determining how well a data display shows
the structure of the data. See chapter 1 for an example where choosing
the aspect ratio to carry out banking to 45° shows information in the data
that cannot be seen if the graph is square, that is, has an aspect ratio of
1. More generaly, any time we graph a curve, or a scatter of points with
an underlying pattern that we want to assess, controlling the aspect ratio is
vital. One advance of Trellis Graphics is the direct control of the aspect
ratio through the argument aspect-=.

29
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6.2 aspect=

You can use aspect= to set theratio to a specific value. In figure 6.1, the
aspect ratio has been set to 3/4:

xyplot (NOx E, data = gas, aspect = 3/4)
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Setting aspect = "xy" banks line segments to 45°. Here is how it
works. Suppose x and y are data points to be plotted. Consider the line
segments that connect successive points. The aspect ratio is chosen so that
the absol ute val ues of the slopes of these segments are centered on 45°. This
isdoneinfigure 6.2 by the expression

xyplot (NOx E, data = gas, aspect = "xy")

We have used the data themselvesin this example to carry out banking,
just to illustrate how it works. The resulting aspect ratio is about 0.4. Ordi-
narily, though, we should bank based on a smooth underlying pattern in the
data; that is, we should bank based on the line segments of a fitted curve.
You can do that with Trellis Graphics as well; an example will be given in
chapter 16.
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Chapter 7

General Display Functions

Each general display function draws a particular type of graph. For exam-
ple, dotplot () makes dot plots, wireframe () makes 3-D wireframe
displays, histogram () makes histograms, and xyplot () makes X-y
plots. This chapter describes a collection of general display functions.

7.1 A Data Set: fudl.frame

The dataframe fuel . frame contains five variables that measure charac-
teristics of 60 automobile models;

> names (fuel.frame)

[1] "Weight" "Disp." "Mileage" "Fuel" "Type"
> dim(fuel.frame)
[1] 60 5

The variables are weight, displacement of the engine, fuel consumption in
miles per gallon, fuel consumption in gallons per mile, and a classification
into type of vehicle. Thefirst four variables are numeric. Thefifth variable
isafactor:

> table (fuel.frame$Type)
Compact Large Medium Small Sporty Van
15 3 13 13 9 7

35



36 CHAPTER 7. GENERAL DISPLAY FUNCTIONS

7.2 xyplot()

We have aready seen xyplot () in action in many of our previous ex-
amples. This function is a basic graphica method—graphing one set of
numerical values on a vertical scale against another set of numerical values
on ahorizontal scale.

Figure 7.1 is a scatterplot of mileage against weight:

xyplot (Mileage = Weight, data = fuel.frame,
aspect = 1)

The variable on the left of the ~ goes on the vertical, or y, axis and the
variable on the right goes on the horizontal, or X, axis.
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7.3 bwplot()

The box and whisker plot, or box plot, is a very clever invention of John
Tukey that iswidely used for comparing the distributions of several datasets.
Figure 7.2 isabox plot of mileage classified by vehicletype:

bwplot (Type ~ Mileage, data = fuel.frame,
aspect = 1)

Thefactor Type ison theleft of the formula because it goes on the vertical
axis and the numeric vector Mi leage ison theright because it goes on the
horizontal axis.
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7.4 stripplot()

A strip plot, sometimes called a one-dimensional scatterplot, issimilar to a
box plot in general layout but the individual data points are shown instead
of the box plot summary.

Figure 7.3 isastripplot:

stripplot (Type ~ Mileage, data = fuel.frame,
aspect = 1, jitter = T)

Setting jitter = TRUE causes some random noise to be added verti-
caly to the points to alleviate the overlap of the plotting symbols. When
jitter = FALSE, the default, the pointsfor each level lie on ahorizon-
tal line.
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7.5 qq()

The quantile-quantile plot, or g-q plot, is an extremely powerful tool for
comparing the distributions of two sets of data. The ideais quite simple;
guantiles of one dataset are graphed against corresponding quantiles of the
other dataset.

Thevariable fuel . frame$Type hasfivelevels:

> table (fuel.frame$Type)
Compact Large Medium Small Sporty Van
15 3 13 13 9 7

Figure 7.4 isaqg-q plot comparing the quantiles of mileage for compact cars
with the corresponding quantiles for small cars:

gq (Type =~ Mileage, data = fuel.frame, aspect

=1
subset = (Type == "Compact") | (Type == "Small")

)
The factor on the left side of the formula must have two levels. The default
|abels for the two scales are the names of the levels.
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7.6 dotplot()

The dot plot, which displays data with labels, provides highly accurate vi-
sual decodings, typically far more accurate than other methods for display-
ing labeled data.

L et us compute the mean mileage for each vehicle type:

> mileage.means <- tapply(fuel.frame$Mileage,
+ fuel.frame$Type, mean)
> mileage.means
Compact Large Medium Small Sporty Van
24.13333 20.33333 21.76923 31 26 18.85714

Figure 7.5 isadotplot of the log base 2 means:

dotplot (names (mileage.means)
log(mileage.means, base=2),
aspect = 1, cex = 1.25)

The argument cex is passed to the panel function to change the size of the
dot of the dot plot in this case; more on thisin chapter 12.

Notice that the vehicle types in figure 7.5 are ordered, from bottom to
top, by the order of the elements of the vector mileage.means. SO
to change the order on the graph we ssimply change the order of the vec-
tor elements. For example, if you wanted the graph to show the values
from smallest to largest going from bottom to top, you could redefine
mileage.means:

mileage.means <- sort (mileage.means)

and then make the plot.
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7.7 barchart()

Overdl, dot plotsare amore effective display method than bar charts, avoid-
ing some of the perceptual problems of bar charts. Still, there are circum-
stances where bar charts are harmless.

Figure 7.6 isabar chart of the mileage means (without l0gs):

barchart (names (mileage.means) "mileage.means,
aspect = 1)
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Figure 7.6: Barchart, another display for labeled data.
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7.8 piechart()

Pie charts have severe perceptual problems. Experiments in graphical per-
ception have shown that compared with dot plots, they convey information
far less reliably. But if you want to display some data, and perceiving the
information is not so important, then a pie chart isfine.

Figure 7.7 isapie chart of the mileage means:

piechart (names (mileage.means) "mileage.means,
aspect = .5)
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7.9 qgmath()

Normal probability plots, or normal g-q plots, are the single most powerful
tool for determining if the distribution of a set of measurements is well
approximated by the normal distribution.

Figure 7.8 isanormal probability plot of the mileages for small cars:

ggmath ("Mileage, data = fuel.frame, aspect = 1,
subset = (Type == "Small"))

That is, the ordered data are graphed against quantiles of the standard nor-
mal distribution.

Note that the formulafor ggmath () isused in away unlike any of the
previous examples. Only one data object appears in the formula, to the right
of the ~, because this graphical method utilizes only one data object.

gamath () can aso make probability plots for other distributions. It
has an argument distribution whose input is any function that com-
putes quantiles. The default is gnorm. If we used

ggmath ("Mileage, data = fuel.frame, aspect = 1,
subset = (Type == "Small"),
distribution = gexp)

the result would be an exponential probability plot. Note that the name of
the function appears as the default |abel on the horizontal scale of the plot.
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Figure 7.8: Normal quantile plot.
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7.10 histogram()

A histogram can be useful for showing the distribution of a single set of
data, but two or more histograms are typically not nearly as powerful as a
box plot or g-q plot for comparing data distributions.

Figure 7.9 is a histogram of mileage:

histogram("™Mileage, data = fuel.frame, aspect = 1,
nint = 10)

The argument nint determines the number of intervals. The histogram
algorithm chooses the intervals to make the bar widths be simple numbers
while trying to make the number of intervalsas closetonint as possible.
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Figure 7.9: Histogram.
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7.11 densityplot()

Like histograms, density plots can be of help in understanding the distribu-
tion of asingle set of data, but box plots and g-q plots typically give more
incisive comparisons of distributions.

Figure 7.10 isadensity plot of mileage:

densityplot ( 7 Mileage, data = fuel.frame,
aspect = "xy", width = 5)

The argument width controls the width of the smoothing window in the
same units as the data, mpg here; as the width increases, the smoothness
increases.
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7.12 splom()

The scatterplot matrix is an exceedingly powerful tool for displaying mea-
surements of three or more variables.
Figure 7.11 is a scatterplot matrix of the variablesin fuel . frame:

splom( ~ fuel.frame)

Note that the factor Type has been converted to a numeric variable and
plotted just like the other variables, which are numeric. The six levels of
Type simply take the values 1 to 6 in this conversion.
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7.13 parallel()

Parallel coordinates are an interesting method, but it is unclear at the time
of thiswriting whether they have the power to uncover structure that is not
more readily apparent using other graphical methods.

Figure 7.12 is a paralel coordinates display of the variables in
fuel.frame:

parallel ( fuel.frame)
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Figure 7.12: Parallel coordinates plot.
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7.14 A Data Set: gauss

To further illustrate the general display routines, we will compute afunction
of two variables over agrid.

datax <- rep(seqg(-1.5, 1.5, length=50), 50)

datay <- rep(seqg(-1.5, 1.5, length=50), rep(50, 50))
dataz <- exp(-(datax”2 + datay”2 + datax*datay))
gauss <- data.frame(datax, datay, dataz)

Thus dataz is the exponential of a quadratic function defined over a 50
by 50 grid; in other words, the surface is proportional to a bivariate normal
density.

7.15 contourplot()

Contour plots are helpful displaysfor studying afunction, f(x,y), when we
have no need to study the conditional dependence of f on x giveny or of f
ony given x. Conditional dependence is revealed far better by multipanel
conditioning.

Figure 7.13 isacontour plot of the gaussian surface:

contourplot (dataz ~ datax * datay, data = gauss,
aspect = 1, at = seqg(.1, .9, by = .2))

The argument at specifies the values as which the contours are to be com-
puted and drawn. If the argument is not specified, reasonable default values
are chosen.
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Figure 7.13: Contour plot.
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7.16 levelplot()

Level plots are aso helpful displays for studying a function, f(x,y). They

are no better than contour plots when the function is simple, but often are

better when there is much fine detail, for example, many peaks and valleys.
Figure 7.14 isalevel plot of the gauss surface:

levelplot (dataz 7 datax * datay, data = gauss,
aspect = 1, cuts = 6)

The values of the surface are encoded by color, agray scalein thiscase. For
devices with full color, the scale goes from pure magenta to white and then
to pure cyan. If the device does not have full color, agray scaleis used.

For alevelplot, the range of the function valuesis divided into intervals
and each interval is assigned a color. A rectangle centered on each grid
point is given the color of the interval containing the value of the function
at the grid point. In figure 7.14 there are six intervals. The argument cuts
specifies the number of breakpoints between intervals.
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7.17 wireframe()

Wireframe displays can be quite useful for displaying f (x,y) when we have
no need to study conditional dependence, which is revealed far better by
multipanel conditioning.

Figure 7.15 isa 3-D wireframe plot of the gauss surface:

wireframe (dataz ~ datax * datay, data = gauss,
drape = F, screen = list(z = 45, x = -60, yv = 0))

The arrows point in the direction of increasing values of the variables.

The argument screen isalist. The three components of the list—x,
v, and z—refer to screen axes. The first component is horizontal and the
second is vertical, both in the plane of the screen. The third component is
perpendicular to the screen. The surface is rotated about these axes in the
order given in the list. Here is how it worked for figure 7.15. The surface
began with dat ax asthe horizontal screen axis, datay asthevertical, and
dataz as the perpendicular. The origin was at the lower left in the back.
First, the surface was rotated 45° about the perpendicular screen axis, where
a positive rotation is counterclockwise. Then, there was a —60° rotation
about the horizontal screen axis, where anegative rotation bringsthe picture
at the top of the screen away from the viewer and the bottom toward the
viewer. Finally, there was no rotation about the vertical screen axis, had
there been one with a positive number of degrees, then the left side of the
picture would have moved toward the viewer and the right away.

If drape = T, acolor encoding isadded to the surface using the same
encoding method of the level plot.
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Figure 7.15: Wireframe plot.
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7.18 cloud()

A static 3-D plot of a scatter of points is typically not effective because
the depth cues are insufficient to give a strong 3-D effect. till, on rare
occasions, such aplot can be useful, sometimes as a presentation or teaching
tool.

Figure 7.16 is a 3-D scatterplot of the first three variables in the data
frame fuel . frame:

cloud (Mileage Weight * Disp., data = fuel.frame,

screen = list(z = -30, x = -60, yv = 0),
xlab = "W",
ylab = "D",
zlab = "M")

The behavior of theargument screen isthesameasthat for wireframe.
We have used three additional arguments to specify scale labels; such label-
ing will be discussed in chapter 10.



7.18. CLOUD()

Figure 7.16: Scattercloud plot.
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7.19 TheDisplay Functionsand Their Formulas

The following listing of the general display functions and their formulas
is instructive because it shows certain conventions and consistencies in the
formula mechanism:

Graph One Numerical Variable Against Another

xyplot (numericl 7 numeric2)
Compare the Sample Distributions of Two or More Sets of Data

bwplot (factor 7 numeric)
stripplot (factor ™ numeric)
gqg (factor 7 numeric)

Graph Measurements with Labels

dotplot (character 7 numeric)
barchart (character © numeric)
piechart (character ~ numeric)

Graph the Sample Distribution of One Set of Data

ggmath ("numeric)
histogram(“numeric)
densityplot ("numeric)

Graph Multivariate Data

splom(~data.frame)
parallel ("data.frame)

Graph a Function of Two Variables Evaluated on a Grid

contourplot (numericl 7 numeric2 * numeric3)
levelplot (numericl 7 numeric2 * numeric3)
wireframe (numericl ~ numeric2 * numeric3)

Graph Three Numerical Variables

cloud (numericl ~ numeric2 * numeric3)



Chapter 8

Arranging Several GraphsOn
One Page

Several graphs, made separately by Trellis display functions, can be dis-
played on a single page. There is one restriction. None of the individual
graphs may be a multipanel conditioning display with more than one page.
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8.1 print()
Figure 8.1 shows two graphs arranged on one page:

attach(fuel.frame)

box.plot <- bwplot (Type Mileage)
scatter.plot <- xyplot (Mileage =~ Weight)
detach ()

print (box.plot, position = c¢(0,0,1,.4), more = T)
print (scatter.plot, position = c(0,.35,1,1))

The argument position specifies the position of each graph on the page
using a page coordinate system in which the lower left corner of the page
is (0, 0) and the upper right corner is (1, 1). The graph rectangle is the
portion of the page allocated to a graph. position takes avector of four
numbers; the first two numbers are the coordinates of the lower left corner
of the graph rectangle, and the second two numbers are the coordinates of
the upper right corner. The argument more= has been give a value of T,
which says that more drawing is coming.

Noticethat in the above exampl e the graph rectangles overlap somewhat.
Here is the reason. The graph contains margins (empty space) around the
edges of the graph. But in arranging graphs on a page, we might well want
to overlap margin space to use the page space as efficiently as possible.
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Figure 8.1: Multiple plots per page.
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Figure 8.2 illustrates another argument, split=, that providesadiffer-
ent method for arranging the plots on the page:

attach (fuel. frame)

scatter.plot <- xyplot (Mileage =~ Weight)
other.plot <- xyplot (Mileage ~ Disp.)
detach ()

print (scatter.plot, split = c¢(1,1,1,2), more = T)
print (other.plot, split = c¢(1,2,1,2))

split= takes a vector of four values. The last two define an array of
subregionsin the graphics region. In our example, the array has one column
and two rows for both plots. The first two values of split= prescribe the
subregion in which the current plot is to be drawn.
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Chapter 9

Multipanel Conditioning

9.1 A Data Set: barley

Thedataframebarley containsdatafrom the barley experiment discussed
insection 1.1.

> names (barley)
[1] "yield" "variety" "year" "site"

Thefirst of these four variablesis numeric, and the remaining three are fac-
tors. The experiment was run in the state of Minnesotain the 1930s. At six
sites, ten varieties of barley were grown in each of two years. The data col-
lected for the experiment are the yields in bushels/acre for all combinations
of site, variety, and year, so there are 6 x 10 x 2 = 120 observations.

9.2 About Multipanel Display

Figure 9.1 uses multipanel conditioning to display the barley data. Each
panel displaysthe yields of the ten varieties for one year at one site; variety
is graphed along the vertical scale and yield is graphed along the horizontal
scale. For example, the lower left panel displays values of variety and yield
for Grand Rapidsin 1932. The panel variables are yield and variety and the
conditioning variables are year and site.

9.3 formula=

Figure 9.1 was made by the following command:
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dotplot (variety ~ yield | year * site,
data = barley)

The | isread as“given”. Thustheformulaisread asvariety “isgraphed
against” yield“given’ year andsite. Thusasimpleuseof formula=
creates a complex multipanel display.
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Figure 9.1: Multipanel conditioning.



78 CHAPTER 9. MULTIPANEL CONDITIONING

9.4 Columns, Rows, and Pages

A multipanel conditioning display is a three-way rectangular array laid out
into columns, rows, and pages. In figure 9.1 there are two columns, six
rows and one page. The numbers of columns, rows, and pages are selected
by an agorithm that attempts of fill up as much of the graphics region as
possible subject to certain constraints. Aswe will see in section 9.6, there
isan argument 1ayout= that alows you to choose the numbers.

9.5 Packet Order and Panel Order

In the above formula, the conditioning variable year appeared first and
site appeared second. This givesan explicit ordering to the conditioning
variables. Each of these variablesis afactor with levels:

> levels (barleyS$Syear)
[1] m1932" m1931™"

> levels (barleyS$site)
[1] "Grand Rapids" "Duluth" "University Farm"
[4] "Morris" "Crookston" "Waseca"

The levels of each factor are ordered by their order of appearance in the
levels attribute. Aswe will discuss shortly, we can control the order by
making the factor an ordered factor.

A packet isinformation sent to a panel for display. For figure 9.1, each
packet includes the values of variety and yield for a particular combination
of year and site. Packets are ordered by the orderings of the conditioning
variablesand their levels; thelevelsof thefirst conditioning variablevary the
fastest, the levels of the second conditioning variable vary the next fastest,
and so forth. For figure 9.1, the order of the packetsis

1932 Grand Rapids
1931 Grand Rapids
1932 Duluth

1931 Duluth

1932 University Farm
1931 University Farm
1932 Morris

1931 Morris

1932 Crookston
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1931 Crookston
1932 Waseca
1931 Waseca.

The panels of a multipanel display are aso ordered. The bottom left
panel is panel one. From there we move fastest through the columns, next
fastest through the rows, and the slowest through the pages. The panel or-
dering ruleislike agraph, not like atable; the originis at the lower left and
as we move either from left to right or from bottom to top, the panel order
increases. The following shows the panel order for figure 9.1, which has
two columns, six rows, and one page:

11 12
9 10
8

R w01 Jd

6
4
2

In Trellis Graphics, packets are assigned to panels according to the
packet order and the panel order. Packet 1 goesin panel 1, packet 2 goesinto
panel 2 and so forth. In figure 9.1, the two orderings result in the year vari-
able changing along the columns and the site variable changing along the
rows. Note that as the levels for one of these factors increase, the darkened
bars in the strip label for the factor move from left to right.

9.6 layout=

Multipanel conditioning isapowerful tool for understanding how aresponse
depends on two or more explanatory variables. In such an analysis, it is
typically important to make as many displays as necessary to have each
explanatory variable appear at least once as a panel variable. In figure 9.1
variety, an explanatory variable, appears as a panel variable.

We will make anew display with site as a panel variable. The argument
layout= specifies the numbers of columns, rows, and pages:

dotplot (site ~ yield | year * variety,
data = barley, layout = c(2,5,2))
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Theresult isshown in figure 9.2, thefirst page, and in figure 9.3, the second
page.

If we do not specify 1ayout=, Trellis Graphics chooses the numbers of
columns, rows, and pages by a layout algorithm. The algorithm takes into
account the aspect ratio, the number of packets, the number of conditioning
variables, and the number of levels of each conditioning variable. It chooses
the numbers to maximize the size of the graph within the graphics region.
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Figure 9.2: Multipanel conditioning with layout.
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Figure 9.3: Multipanel conditioning and layout (cont.)
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9.7 Main-EffectsOrdering: reorder.factor()

For the barley data, the explanatory variables are categorical. The dataset
for each is a factor. (Since there are only two years, the year variable is
treated as a factor rather than a numeric vector.) For each factor, consider
the median yield for each level. For example, for variety, the level medians
are

> variety.medians <- tapply(barleysyield,
+ barleyS$variety, median)

> variety.medians
Svansota No. 462 Manchuria No. 475 Velvet Peatland
28.55 30.45 30.96667 31.06667 32.15 32.38334
Glabron No. 457 Wisconsin No. 38 Trebi
32.4 33.96666 36.95 39.2

Thebarley displaysinfigures 9.1 to 9.3 use an important display method:
main-effects ordering of levels. Thisgreatly enhances our ability to perceive
effects. Consider figure 9.1. On each panel, the varieties are ordered from
bottom to top by the variety medians; Svansota has the smallest median and
Trebi hasthe largest. The site panels have been ordered from bottom to top
by the site medians; Grand Rapids has the smallest median and Waseca has
thelargest. Finally, the year panels are ordered from left to right by the year
medians; 1932 has the smaller median and 1931 has the larger.

This median ordering is achieved by making the dataset for each ex-
planatory variable an ordered factor, where the levels are ordered by the
medians. For example, suppose variety started out as a factor without
the median ordering. We get the ordered factor through the following:

barleyS$variety <- ordered(barley$variety,
levels = names (sort (variety.medians)))

Main effects ordering is so important and is carried out so often that
Trellis Graphicsincludes afunction reorder. factor () to carry it out.
Here, it isused to reorder variety:

barleyS$variety <- reorder.factor (barleys$variety,
barleySyield, median)

The first argument is the factor to be reordered, the second is the data on
whose main effects the reordering is based, and the third argument is the
function to be applied to the second argument to compute main effects.
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9.8 Controlling the Pages of a Multipage Dis-
play

If amultipage display is sent to a screen device, the default behavior is for
the pages to be drawn in succession; in other words, a page is overwritten
by the drawing of its successor. This givesyou little time to look at any but
the last page. You can control the page flow by

par (ask = TRUE)

S-PLUS gueries you before each page is drawn; hit return to go to the next
page.

The problem with this method is that you cannot go backward to ook
at an earlier page. Another solution, however allows it. Simply specify
postscript asthe device, and then use a PostScript screen reader such
as Ghostview to look at the output. Such readers alow easy movement
through PostScript pages.

9.9 Summary: How to Lay Out a Multipanel
Display
To lay out amultipanel display in acertain way you specify the following:

e Anordering of the conditioning variables by the order you enter them
inthe argument formula=

e An ordering of the levels of each factor, possibly by creating an or-
dered factor

e The number of columns, rows, and pages through the argument
layout-=.

0.10 A Data Set: ethanol

Thedataframe ethanol containsthree variablesfrom an industrial exper-
iment with 88 runs:

> names (ethanol)

[1] "NOx" "C"  "E"
> dim(ethanol)

[1] 88 3
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The concentrations of oxides of nitrogen (NOX) in the exhaust of an engine
were measured for different settings of compression ratio (C) and equiva-
lence ratio (E). These measurements were part of the same experiment that
produced the measurementsin the dataframe ga s introduced in section 5.1.
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9.11 Conditioning On Discrete Values of a Nu-
meric Variable

For the barley data, the explanatory variables are factors, so it is natural to
condition on the levels of each factor. Thisis not the case for the ethanol
data; both explanatory variables, C and E, are numeric. Suppose for the
ethanol data, that we want to graph NOx against E given C. The variable
C has five unique values; in other words, the variable, while numeric, is
discrete:

> table (ethanolsC)
7.5 9 12 15 18
22 17 14 19 16

It makes sense then to condition on the unique values of C. Figure 9.4 does
this:

xyplot (NOx ~ E | C, data = ethanol, aspect = 1/2)

When a numeric variable is used as a conditioning variable in the ar-
gument formula=, then conditioning is automatically carried out on the
sorted unique values. In other words, the levels of the variablein such a case
arethe unique values. The order of thelevelsisfrom smallest to largest. For
C, thefirst level is 7.5, the second is 9, and so forth. Thus the first packet
includes values of NOx and E for C = 7.5, the second packet includes the
valuesfor C =9, and so forth. As before, the packets fill the panels accord-
ing to the packet order and the panel order. In figure 9.4, the values of C,
which are indicated by the thin darkened bars in the strip labels, increase
from bottom to top.
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Figure 9.4: Conditioning on discrete values of a numeric variable.
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9.12 ConditioningOn Intervalsof aNumericVari-
able

For the ethanol data we graphed NOx against E given C in figure 9.4. We
would like to see NOx against C given E as well. But E variesin a nearly
continuous way; there are 83 unique values out of total of 88 values. Clearly
we cannot condition on single values.

Instead, we condition on intervals. Thisisdonein figure 9.5. On each
panel, NOx is graphed against C for E in an interval. The intervals, which
are portrayed by the darkened barsin the strip, are ordered from low to high,
so as we go left to right and bottom to top through the panels, the intervals
go from low to high. The intervals overlap. The next section describes how
they were created and the expression that produced the graph.

9.13 equal.count()

Thenineintervalsin figure 9.5 were produced by the equal count algorithm:

GIVEN.E <- equal.count (ethanol$E, number = 9,
overlap = 1/4)

There are two inputs to the algorithm, the number of intervals and a target
fraction of points to be shared by each pair of successive intervals. In fig-
ure 9.5, theinputsare 9 and 1/4. The algorithm picksinterval endpoints that
arevalues of the data; theleft endpoint of the lowest interval isthe minimum
of the data, and the right endpoint of the highest interval is the maximum
of the data. The endpoints are chosen to make the counts of pointsin the
intervals as nearly equal as possible, and the fractions of points shared by
successive intervals as close to the target fraction as possible.
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The command that produced figure 9.5is

xyplot (NOx ~ C | GIVEN.E, data = ethanol,
aspect = 2.5)

The aspect ratio was chosen to be 2.5 to approximately bank the underlying
pattern of the points to 45°. Notice that the automatic layout algorithm
chose five columns and two rows.

9.14 Shingles: shingle()

Theresult of equal . count () isan object of class shingle. Theclass
is named “shingle” because of the overlap, like shingles on aroof. First, a
shingle contains the numerical values of the variable and can be treated as
an ordinary numeric variable:

> range (GIVEN.E)
[1] 0.535 1.232
> range (ethanol$SE)
[1] 0.535 1.232

Second, a shingle has the intervals attached as an attribute. Thereis a plot
method, a special Trellis function, that displays the intervals. Figure 9.6
showstheintervals of GIVEN. E:

plot (GIVEN.E)
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Figure 9.6: Shingles computed from a numeric variable.
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You can use the function 1levels () to extract the intervals from the
shingle:

> levels (GIVEN.E)
min max

0.535 0.686
0.655 0.761
0.733 0.811
0.808 0.899
0.892 1.002
0.990 1.045
1.042 1.125
1.115 1.189
1.175 1.232

A shingle can be specified directly by the function shingle (). For
example, the following creates 5 intervals of equal width and no overlap for
the variable ethanol $E:

> endpoints <- seqg(min(ethanol$E), max(ethanolSE),
+ length = 6)

> GIVEN.E <- shingle(ethanol$E, intervals =

+ cbind (endpoints|[-6],endpoints([-1]))

> levels (GIVEN.E)

min max
0.5350 0.6744
0.6744 0.8138
0.8138 0.9532
0.9532 1.0926
1.0926 1.2320

The argument intervals= is atwo-column matrix; the first column is
the left endpoints of the intervalsand the right column is the right endpoints
of theintervals.



Chapter 10
Scales and L abels

The general display functions presented in chapter 7 have arguments that
specify the scales and labels of graphs. These arguments are discussed in
this chapter.

93



94 CHAPTER 10. SCALESAND LABELS

10.1 xlab=, ylab=, main=, sub=

Figure 10.1 is a scatterplot of NOx against E for the gas data, which were
introduced in section 5.1:

xyplot (NOx E, data = gas, aspect = 1/2)
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Figure 10.1: Default axis labels and titles.
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In figure 10.1, the label for the horizontal, or x, scale, and the label
for the vertical, or y, scale are taken from the names used in the argument
formula=. We can specify these scale labels as well asamain title at the
top and a subtitle at the bottom. Thisisillustrated in figure 10.2:

xyplot (NOx ~ E, data = gas, aspect = 1/2,
xlab = "Equivalence Ratio",
ylab = "Oxides of Nitrogen",
main = "Air Pollution",

sub = "Single-Cylinder Engine")
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Figure 10.2: Specifying axis labels and titles.
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Each of these four label arguments can aso be a list. The first com-
ponent of the list is a new character string for the text of the label. The
other components specify the size, font, and color of the text. The compo-
nent cex specifiesthe size; font, apositive integer, specifies the font; and
col, apositiveinteger, specifies the color. Figure 10.3 changes the sizes of
the title and subtitle:

1/2,

xyplot (NOx ~ E, data = gas, aspect
xlab = "Equivalence Ratio",
ylab "Oxides of Nitrogen",
main list ("Air Pollution", cex = 2),
sub = list("Single-Cylinder Engine", cex = 1.25))
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10.2 xlim=, ylim=

In Trellis, the upper value of the scalelinefor anumeric variableisthe max-
imum of the data to be plotted plus 4% of the range of the data. Similarly,
the lower value of the scale line for a numeric variable is the minimum of
the data to be plotted minus 4% of the range of the data. The 4% helps
prevent the data values from running into the edge of the plot.

We can alter the extremes of the horizontal scale line by the argument
x1im=, avector of two values. Thefirst value replaces the minimum of the
data in the above procedure, and the second value replaces the maximum.
Similarly, we can alter the vertical scae by y1im-=.

In figures 10.1 to 10.3, NOx is graphed along the vertical scale. The
limits of thisvariable are

> range (gas$NOx)
[1] 0.537 5.344

In figure 10.4, the values 0 and 6 have been included in the vertical scale:

xyplot (NOx E, data = gas, aspect = 1/2,
ylim = c (0, 6))
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Figure 10.4: Specifying horizontal and vertical scale limits.
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10.3 scales=, pscales=

The argument scales= affects tick marks and tick mark labels. In fig-
ure 10.4 there are seven tick marks and tick mark |abels along the vertical
scale and six along the horizontal. In figure 10.5, scales= isused to re-
duce the number of ticks and increase the size of the tick labels:

xyplot (NOx E, data = gas, aspect = 1/2,
ylim = c(0, 6),
scales = list(cex = 2, tick.number = 4))

The argument scales=isalist. Thelist component cex affects the size.
Thelist component t ick . number affects the number, but it isjust a sug-
gestion; an algorithm goes off and tries to find tick values that are pretty,
while trying to come as close as possible to the specified number.

We can aso specify the tick marks and labels separately for each scale.
The specification

scales = list(cex = 2,
x = list(tick.number = 4),
y = list(tick.number = 10))

changes cex on both scales, but tick.number has been set to 4 for
the horizontal, or X, scale, and has been set to 10 for the vertical, or vy,
scale. Thustheruleisthis: specifications for the horizontal scale appear in
scales= asacomponent x that isitself alist, specificationsfor the vertical
scale appear in scales= asacomponent y that isalist, and specifications
for both scales appear as remaining components of scales-=.

There is an exception to the behavior of scales=. Thetwo 3-D gen-
eral display functionswireframe () and cloud () currently do not ac-
cept changes to each scale separately; in other words, components x v,
and z cannot be used. The general display function piechart () has
no tick marks and labels, so scales= does not apply at al. The general
display function splom has many scales, so the same delicate control is
not available, but more limited control is available through the argument
pscales-=.
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Figure 10.5: Finer control on axis ticks and labels.
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10.4 3-D Display: aspect=

The aspect ratio, the height of a panel data region divided by the width, is
controlled by aspect=. This argument was introduced in chapter 6 for
2-D displays. The behavior of aspect= for the two 3-D genera display
functions, wireframe () and cloud (), is somewhat different. Since
there are three axes, we must specify two aspect ratiosto specify the shape of
the 3-D box around the data. Suppose the formula and the aspect arguments
are

formula = z 7 x * y, aspect = c(1, 2)

Then theratio of the length of the y-axisto the length of the x-axisis 1, and
the ratio of the length of the z-axis to the length of the x-axisis 2.

10.5 Changingthe Text in Strip Labels

The default text in the strip label for a numeric conditioning variable is the
name of the variable. Thisisillustrated in figure 10.6, which displays the
ethanol data introduced in section 9.10:

xyplot (NOx ~ E | C, data = ethanol)
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Figure 10.6: Default strip labels for numeric conditioning variables.
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The default text in the strip label of afactor conditioning variable isthe
name of thefactor level for the panel. Thisisillustratedin figure 10.7, which
displaysthe barley dataintroduced in section 9.1.

dotplot (variety ~ yield | year * site,
data = barley)

The name of the factor, for example, site, does not appear because seeing
the names of the levelsistypically enough to convey the name of the factor.

Thus the text comes from the names given to variables and factor levels
in the datasets that are plotted. If we want to change the text we can change
the names. For example, if we want to change the long label “University
Farm” to “U. Farm” then we can change the names of the levels of the
factor site:

> levels (barleyS$site)
[1] "Grand Rapids" "Duluth" "University Farm"
[4] "Morris" "Crookston" "Waseca"

> levels (barleyS$site) [3] <- "U. Farm"
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Figure 10.7: Default strip labels for categorical conditioning variables.
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10.6 Strip Label Text Size: par.strip.text=

The size, font, and color of the text in the strip labels can by changed by the
argument par.strip.text=, alist whose components are the parame-
ters cex for size, font for the font, and col for the color. For example,
we can make huge strip labels by

par.strip.text = list(cex = 2)

10.7 Programming Strip Labels. strip=

The argument strip= alows very delicate control of what is put in the
strip labels. One usage isto remove the strip labels altogether:

strip = F

Another is to control the inclusion of names of conditioning variables in
strip labels. Thisisillustrated in Figure 10.8:

dotplot (variety ~ yield | year * site, data = barley,
strip = function(...)
strip.default (..., strip.names = c(T,T))

)

The argument strip.names= takes alogical vector of length two. The
first element tells whether or not the names of factors should be included
along with the names of the levels of the factor, and the second element tells
whether or not the names of shingles should be included. The default is
c(F,T).
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Figure 10.8: Fine tuning the strip labels.
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Chapter 11

Devices

11.1 ThreeKick Methods

You can send Trellisgraphsto aprinter directly or to afile for later printing.
But when you issue a command to do this, the sending does not happen
immediately. You need to give the system a kick. There are three ways
to kick: (1) send another graph; (2) turn off the device with the command
dev.off (); (3) endyour S-PLUS session with g () .

11.2 trellis.device()

Thefunction trellis.device () specifiesadevice and enables Trellis
Graphics to tailor rendering details such as color, symbols, and line types
to the specified device. We saw in section 3.1 that it can be used to specify
screen devices. Aswe will see, it can be used to specify devicesfor sending
directly to aprinter or for sending to afile for later printing.

11.3 SendingtoaPrinter or aFile

On UNI X, the command

trellis.device (postscript, onefile = FALSE)

sets up a PostScript device for direct sending to the printer. A graph goes
to the printer when you kick the system. Adding color = TRUE to the
argument list specifies color PostScript.

On UNIX, the command
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trellis.device (postscript,
onefile = FALSE,
print.it = FALSE,
file = "greatgraph.ps")

sets up a PostScript device for sending to the file greatgraph.ps. The file
writing iscompleted after you kick. But with thisdevice specification, if you
issue two commandsto draw two separate graphs, the first will overwritethe
second. Again, addingcolor = TRUE totheargument list specifies color
PostScript.

On Windows, you can specify various types of printers. The command

trellis.device (win.printer,
printer.type = "postscript")

specifies a PostScript printer for direct sending. A graph goes to the printer
when you kick the system. Adding color = TRUE to the argument list
specifies color PostScript. For PCL printers use:

trellis.device (win.printer, printer.type = "pcl")

However, while you can get color printing on PCL printers by changing
arguments to Trellis functions, there is not yet an argument color to cus-
tomize PCL for color printing.

On Windows, the command

trellis.device (win.printer,
printer.type = "postscript",
format = "printer",
file = "graph.ps")

writes PostScript to the file graph.ps, after the kick. Similarly,

trellis.device (win.printer,
printer.type = "pcl",
format="printer",
file = "graph.pcl")

does the same for PCL. Note that if you issue two commands to draw two
separate graphs without changing the device in any way, the first will over-
write the second.

You can also create a Windows metafile that can be inserted into docu-
ments:
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trellis.device (win.printer,
format = "placeable metafile",
file = "graph.wmf")

On Windows, you can print hardcopies by using the S-PLUS File—Print
menu, but thistypically produces an undesirable graph because Trellis Graph-
ics cannot customize the rendering to your hard copy device.

11.4 Devicesfor this Manual

Thegraphsfor thisManual were produced on UNIX usingthepostscript
device. The device used for the black and white graphs was

trellis.device (postscript)
and the device used for color graphs was

trellis.device (postscript, color = T)

11.5 MultipleDevices: dev.list(), dev.cur(), dev.set()

S-PLUS allows you to run multiple devices. A common usage is to have
a screen device and a hardcopy device, the first for experimenting and the
second for sending what you hope will be afinished product.

Suppose you are on UNIX. Then

trellis.device (motif)
trellis.device (postscript)

sets up a screen and a hardcopy device. Only one deviceis current, and that
one receives your graphics commands. For our example, postscript is
current since it was set up last. You can change the current device:

> dev.set (which = 2)
motif
2

Now mot if iscurrent. You can show the current device:

> dev.cur ()
motif
2
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You can see thelist of all active devices:

> dev.list ()
motif postscript
2 3

Finally, as we have seen, dev.off () turns off the current device and
shows the new current device:

> dev.off ()
postscript
3

On Windows, you can use these functions, but you can also use the
Tools-Graphics Device menu to list, select, and close graphics devices, in-
cluding Trellis devices. (You cannot open a Trellis device from this menu,
but you can manipulateit onceit is open.)



Chapter 12

Pandal Functions

The data region of a panel on a Trellis display is the rectangular region
where the data are plotted. A panel function has the sole responsibility for
drawing in the data regions produced by a general display function. The
panel function is given as an argument of the general display function. The
other arguments of the general display function manage the superstructure
of the graph—scales, labels, boxes around the data region, and keys. The
panel function manages the symbols, lines and so forth that encode the data
in the data region.

Every general display function has adefault panel function. In all exam-
ples given so far in this Manual, the default panel function has been doing
the drawing.

12.1 How to Changethe Rendering in the Data
Region

You can change what isdrawn in the data region by one of two mechanisms.
First, adefault panel function has arguments. You can change the rendering
by using these arguments; in fact, you can give them to the general display
function, which will pass them along to the panel function. Second, you can
write your own panel function.
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12.2 Passing Argumentsto a Default Panel Func-
tion

The name of the default panel function for a general display function is
“panel.” followed by the name of the general function. For example the
default panel function for xyplot () iSpanel.xyplot (). Youcanuse
S-PLUS online help to see the arguments of adefault panel function. For ex-
ample, ?panel . xyplot tellsyou about the panel function for xyplot.

You can give an argument to a panel function by giving it to the gen-
eral display function; the general display function passes it on to the panel
function. In Figure 12.1, xyplot () passed pch to panel.xyplot to
specify a“+” asthe plotting symbol:

xyplot (NOx ~ E, data = gas, aspect = 1/2, pch = "+")
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Figure 12.1: Passing graphical parameters to panel functions.
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12.3 Writing A Panel Function: panel=

If you write your own panel function, you give it to the general display
function as the argument panel=. For example, if you have your own
panel function mypanel (), you specify

panel = mypanel

A panedl function is always afunction of at |east two arguments; the first
two are named x and y. Suppose, for the gas data, that you want to use
xyplot () to graph NOx against E and use a“+” as the plotting symbol
for al observations except that for which NOx isamaximum, in which case
you want to use “M”. There is no provision for xyplot () to do this, so
you must write your own.

First, let us write the panel function:

panel.special <- function(x,y)
biggest <- y == max(y)
points (x[!biggest], yl[!biggest], pch = "+")
points (x[biggest], yl[biggest], pch = "M")

The function points () isa core graphics function. It graphs individual
points on agraph. Itsfirst argument x contains the coordinates of the points
along the horizontal scale, and its second argument y contains the coordi-
nates of the points along the vertical scale. The third argument pch gives
the symbol used to display the points.

Figure 12.2 showstheresult of givingpanel . special () toxyplot ().

xyplot (NOx E, data = gas, aspect = 1/2,
panel = panel.special)
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Figure 12.2: Extending a panel function.
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The panel function for figure 12.2 also could have been defined as part
of the xyplot () command:

xyplot (NOx ~ E, data = gas,
aspect = 1/2,
panel = function(x,y)
biggest <- y == max(y)
points (x[!biggest], y[!biggest], pch = "+")
points (x [biggest], vylbiggest], pch = "M")

12.4 A Panel Function for a Multipanel Display

In most cases, a panel function that is used for a single panel display can
be used for a multipanel display aswell. In figure 12.3 the panel function
panel.special (), just used in figure 12.2, is used to show the max-
imum value of NOx on each panel of a multipanel display of the ethanol
data:

xyplot (NOx ~ E | C, data = ethanol, aspect = 1/2,
panel = panel.special)
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Figure 12.3: Re-using panel functionsin multipanel displays.



122 CHAPTER 12. PANEL FUNCTIONS

12.5 Special Panel Functions

Evenif you write your own panel function you might want to use the default
panel function as part of it. Thisis often true when you want to augment a
standard Trellispanel. Also, Trellis Graphics provides some special purpose
panel functions. One of themispanel.loess (). It adds smooth curves
to scatterplots.

Figure 12.4 adds smooth curves to a multipanel display of the ethanol
data:

xyplot (NOx ~ C | GIVEN.E, data = ethanol,
aspect = 2.5,
panel = function(x, y){
panel.xyplot (x, V)
panel.loess(x, y, span = 1)
}
)

Thedefault panel functionpanel . xyplot () drawsthe pointsof the scat-
terplot on each panel. The special panel function panel.loess () com-
putes and draws the smooth curves; the argument span, the smoothing
parameter, has been specified.
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12.6 subscripts=

If you request it, another component of the packet sent to each panel is
the subscripts that tell which original observations make up the the packet.
Knowing these subscriptsis helpful for getting the values of other variables
that might be needed for rendering on the panel. In such a case the panel
function argument subscripts= contains the subscripts. In figure 12.5
the observation numbers have been added to the graph of NOx against E
given C:

xyplot (NOx ~ E | C, data = ethanol, aspect = 1/2,
panel = function(x, y, subscripts)
text (x, y, subscripts, cex = .75)



12.6. SUBSCRIPTS= 125

©
4 L
& 541
41
3 L
53
2 88 43 B
14 42
1 2 44 L
87 53
© I
R 55 19 -4
74 2
B -3
34
. % 7518 -2
1 72 3f§176 -1
25 33
[ ¢
4 4 1 -
11
67 68
s L
6 4
2 9
Z 2 17 -
16 3
1+ 12 -
85 510
I G
- -4
¢80
i 20 6 ,
71
i 46 -,
47 %
i 69 8 L,
8M5 907
©
4 L
5 50 5 i
51
& i “ :
5
1 15 29 N
83 60 78
T T T T
0.6 0.8 1.0 1.2
E
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The core graphics functions commonly used in writing panel functions
are

points ()
lines ()
text ()
segments ()
polygon ()

You can use the S-PLUS online help to see what they do. The core parame-
ters commonly used in writing panel functions are

col
1ty
pch
1lwd
cex

Use ?par for their definitions.
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Panel Functionsand the Trdllis
Settings

Trellis Graphics, as we have discussed, isimplemented using S-PLUS core
graphics, which has controllable graphical parameters that determine the
characteristics of plotted objects. For example, if we want to use a symbol
to show points on a scatterplot, graphical parameters determine the type,
size, font, and color of the symbol.

In Trellis Graphics, the default panel functions for the general display
functions select graphical parameters to render plotted elements as effec-
tively as possible. But because the most desirable choices for one graphics
device can be different from those for another device, the default graphical
parameters are device dependent. These parameters are contained in lists
whichwewill refer to asthe“ Trellissettings.” Whentrellis.device ()
sets up a graphics device, the Trellis settings are established for that device
and are saved on a special data structure.

When you write your own panel functions, you may want to make use
of the Trellis settingsto provide good performance across different devices.
Three functions enable you to access, display, and change the settings for
the current device. trellis.par.get () letsyou get settings for use
in apanel function. show.settings () shows graphically the values of
the settings. trellis.par.set () letsyou change the settings for the
current device.

13.1 trélis.par.get()

Hereisthe panel function panel .xyplot ():
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function(x, vy, type = "p", cex = plot.symbolScex,
pch = plot.symbol$pch, font = plot.symbolsfont,

lwd = plot.lines$lwd, lty = plot.lineSlty,
col = if(type == "1") plot.lineS$col
else plot.symbolScol, ...)
if (type == "1")

plot.line <- trellis.par.get ("plot.line")
lines(x, vy, lwd = 1lwd, 1lty = lty, col = col,

type = type, ...)
else
plot.symbol <- trellis.par.get( "plot.symbol")
points(x, y, pch = pch, font = font, cex = cex,

col = col, type = type, ...)

If the argument type is "p", which means that point symbols are used
to plot the data, then the plotting symbol is defined by the settings list
plot.symbol; the components of this last are given to the function
points () that drawsthesymbols. Thelistisaccessedby trellis.par.get ().
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Hereisthelist plot . symbol for the color PostScript device:

> trellis.device (postscript, color = T)

> plot.symbol <- trellis.par.get ("plot.symbol")
> plot.symbol

Spch:

[1] 1

Scol:
[1] 2

Scex:
[1] 0.8

Sfont:
[1] 1

Thepch of 1 and col of 2 produce a cyan octagon.
If typeis"1l", which meansthat 1ines () isused to plot the data,
then the graphical parametersfor thelinesareinthesettingslistplot . line:

> trellis.device (postscript, color = T)

> plot.line <- trellis.par.get ("plot.line™")
> plot.line

Slwd:

[1] 1

Slty:
[1] 1

Scol:
[1] 2

Thisisacyan-colored solid line.

13.2 show.settings()

show.settings () displaysthe graphical parameters in the Trellis set-
tings for the current device. The result for color PostScript is shown in
Figure 13.1:

trellis.device (postscript)
show.settings ()
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Each panel displays one or more settings lists. The names of the settings
appear below the panels. For example, the panel in the third row (from
the top) and first column shows plotting symbols with graphical parameters
plot.symbol and lineswith graphical parametersplot . line, andthe
panel in the third row and third column shows that the panel function of the
genera display function histogram () usesthe graphical parametersin
bar.fil1 for the color that shades the bars of a histogram.
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13.3 trélis.par.set()

The Trellis settings for the current device can be changed:

> trellis.device (postscript, color = T)

> plot.symbol <- trellis.par.get ("plot.symbol")
> plot.symbol$col

[1] 2

> plot.symbol$col <- 3

> trellis.par.set ("plot.symbol", plot.symbol)

> plot.symbol <- trellis.par.get ("plot.symbol")
> plot.symbolS$Scol

(1] 3

trellis.par.set () setsan entire Trellis setting list, not just some of
the components. Thus the simplest way to make a change is to get the
current list, alter it, and then save the atered list. The change lasts only as
long as the device continues. If the S-PLUS session is ended the altered
settings are removed.



Chapter 14

Superposing Two or More
Groups of Values on a Panel

One common visualization task is superposing two or more groups of values
in the same data region, encoding the different groups in different ways to
show the grouping. For example, we might graph leaf width against |eaf
length for two samples of leaves, one from maple trees and one from oaks,
and use acircle asthe plotting symbol for the maplesand aplusfor the oaks.

Superpositionisachieved by the panel functionpanel . superpose ().
In addition, the key= argument of the general display functions can be used
to show the group encoding.
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14.1 panel.superpose()

Superposition is illustrated in Figure 14.1 which graphs variables from the
dataframe fuel . frame. For 60 automobiles, Mi leage isgraphed against
Weight for six types of vehicles described by the factor Type:

> table (fuel.framesType)
Compact Large Medium Small Sporty Van
15 3 13 13 9 7

The vehicletypesare encoded by using different plotting symbols. (Nothing
on the graph indicates which symbol is for which type, but the next section
contains information about drawing a legend, or key.)

The panel function panel . superpose () carries out such a super-
position, and was used to create Figure 14.1:

xyplot (Mileage =~ Weight,

data = fuel.frame,
groups = Type,
aspect = 1,

panel = panel.superpose)

The factor Type is given to the argument groups of xyplot (). But
groups isasoan argument of panel . superpose (), S0 Type iSpassed
along to the panel function to be used to determine the plotting symbols.
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Figure 14.1: Superposing groups of values in the same data region.
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In Figure 14.1, the plotting symbols are the defaults that are set up by
thetrellisdevicefunctiontrellis.device () ;suchtrellissettingswere
discussed in chapter 13. The specific settingsused by panel . superpose ()
are discussed later in this section. The default symbols have been chosen to
enhance the visual assembly of each group of points; that is, we want to
effortlessly assemble the plotting symbols of a given type to form a visual
gestalt or whole. If assembly can be performed efficiently then we can com-
pare the characteristics of the data for different automobile types.

You can choose your own plotting symbols. For example, suppose that
in Figure 14.1 we want to use the first letters of the vehicle types, but with
“S’ (for “Small”) replaced by “P” (for “Peewee”) to avoid duplication with
“Sporty”:

mysymbols < - C("C","L","M","P","S","V")

panel . superpose () hasanargument pch= that can be used to specify
the symbols. Thisis shown in Figure 14.2, which results from the expres-
sion:

xyplot (Mileage =~ Weight,
data = fuel.frame,
aspect = 1,
groups = Type,
pch = mysymbols,
panel = panel.superpose

)

Notice that, again, we specify an argument of the panel function — in this
case pch — by giving it as an argument to xyplot (), which passes it
along to the panel function.



14.1. PANEL.SUPERPOSE() 137

p
35 — P —
p
S PP P
P P
30 — S —
P
> P S
§ S S
=
PP S
25 — P L
S
M L M M
M M M
M M M M
20 — MS L+
L
\ \ \ \
2000 2500 3000 3500
Weight

Figure 14.2: Specifying superposing plotting symbols.
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panel . superpose () will aso superpose curves. In Figure 14.3, a
line and a quadratic are superposed:

X <- seq(0, 1, length = 50)

linquad <-c(x, x72)

X <- rep(x, 2)

which <- rep(c("linear", "quadratic"), c(50,50))

xyplot (linquad ~ x,

xlab = "Argument",
ylab = "Functions",
aspect = 1,

groups = which,
type = n]mn ,

panel = panel.superpose

)

The argument type= controls the method of plotting. For type="p", the
default, the data are rendered by plotting symbols; the default has been used
to produce Figures 14.1 and 14.2. For type="1", the dataare rendered by
lines; this has been used to produce Figure 14.3.
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panel .superpose () uses the graphical parameters in the Trellis
setting superpose . symbol for the default plotting symbols. For black
and white postscript, the setting results in different symbol types:

> trellis.device (postscript)

> trellis.par.get ("superpose.symbol")

Spch:

[1] moQ1m m4n s g "w" " m{n

Scol:
[1] 1 111111

Scex:
[1] 0.85 0.85 0.85 0.85 0.85 0.85 0.85

Sfont:
[1] 11 1 1111

There are seven symbols, providing for up to seven groups. The sym-
bols are shown in the first panel of the top row of Figureld.4, drawn by
trellis.settings (). If there are two groups, the first two symbols
are used; if there are three groups, the first three symbols are used; and so
forth. The setting for the default linetypesis superpose. line:

> trellis.par.get ("superpose.line")
Slwd:
[1] 1 111111

Slty:
[1] 1 2 3 45 6 7

Scol:
[1] 1 111111

There are seven line types, shown in the second panel of the top row of
Figure 14.4.
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panel . superpose can be used with any genera display function
where superposing different groups of values makes sense. For example,
we can superpose datasets with xyplot (), asin Figures 14.1 to 14.3, or
with dotplot (), or with many of the other general display functions. By
achieving superposition through the panel function, we do not need aspecial
superposition general display function for each type of graphical method,
which makes things much simpler.

Figure 14.5 isadot plot of the barley data discussed in chapter 1:

barley.plot <- dotplot(variety ~ yield | site,
data = barley,
panel = function(x, y, ...) {
dot.line <- trellis.par.get("dot.line")
abline(h = unique(y), 1lwd = dot.lineS$lwd,
lty = dot.lineslty, col = dot.lineScol)
panel.superpose(x, vy, ...)
I
groups = year,
layout = c(1, 6), aspect = .5,
xlab = "Barley Yield (bushels/acre)")
barley.plot

On each panel, data for two years are displayed, and the years, 1931 and
1932, are distinguished by different plotting symbols. The plot has been
savedinthetrellis object barley.plot for uselater on.

For Figure 14.5, the general display function dotplot () hasnot sent
thefactor variety tothe panel function to bethey vector for the function,
but rather has sent a numeric vector of values 1 to 10 with 1 corresponding
to the first of the 10 levels of the factor, with 2 corresponding to the sec-
ond level, and so forth. And the display function has sent the values of
yield as the vector x. The conditioning vector is site; thus on each
panel there are 20 values of x and 20 values of y; for each level of variety,
there are two values of x (one for 1931 and one for 1932) and two values
of y, and there are 10 levels of variety. The plotting symbols are drawn by
panel . superpose () at the 20 values of x and y on each panel.
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The panel function for this dotplot () exampleis more complicated
than that for the xyplot () examples because, along with superposing the
plotting symbols by panel . superpose (), the horizontal lines of the
dot plot must be drawn. abline () draws the lines at the unique val-
ues of y. The characteristics of the line are specified by the Trellis setting
dot.line.

14.2 key=

A key can be added to a Trellis display through the argument key= of the
genera display functions. The argument is alist. With one exception, the
component names are the names of the arguments of the function key (),
which actually does the drawing of the key, so the values of these compo-
nents are given to the corresponding arguments of key (). The exception
is the component space= which can leave extra space for a key in the
margins of the display.

key= iseasy to use yet is quite powerful; it has the capability to draw
most keys used in practice and many yet to be invented.

Figure 14.6 adds akey to Figure 14.5:

update (barley.plot,
key = list(
points = Rows (superpose.symbol, 1:2),
text = list(levels (barleySyear))
)
)

The figure is drawn using update () to alter barley.plot, the ob-
ject that produced Figure 14.5. The component text of key= is alist
with the year names. The component points is alist with the graphical
parameters of the two symbols used by panel . superpose to plot the
data. These parameters are from the Trellis setting superpose . symbol,
which panel . superpose usesto draw the plotting symbols.
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We want to give the component points only the parameters of the
symbols used in Figure 14.6, so the function Rows extracts the first two
elements of each component of superpose. symbol:

> trellis.device (postscript)
> Rows (trellis.par.get ("superpose.symbol"), 1:2)

Spch:
[1] nomnm nymn

Scol:
[1] 1 1

Scex:
[1] 1 1

Sfont:
[1] 1 1

For Figure 14.6, the key has two entries, one for each year. If there had
been four years there would have been four entries. Each entry has two
items; as we shall see, we can specify more items if we choose. The order
of the items is the order of specification in key=; in the above expression
that draws Figure 14.6, points isfirst and text issecond, so in the key,
the symbol is the first item and then the text is the second item. Had we
specified text first, the symbol would have followed the text in each entry.

In Figure 14.6, thetwo entries, by default, are drawn asan array with one
column and two rows. We can change this by the argument columns=. In
Figure 14.7, there are two columns. In addition, we have switched the order
of the symbols and the text:

update (barley.plot,
key = list(
text = list(levels (barleyS$year)),
points = Rows (superpose.symbol, 1:2),
columns = 2))
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The argument space= alocates space for the key in the margins. It
takes one of four values— "top™", "bottom", "right", "left" —
allocating the space on the side of the graph described by the value. So far,
it has been alocating space at the top, which is the default, and placing the
key in the allocated space. More will be said about space= later.

In Figure 14.7, the default location of the key seems a bit too far from
the rest of the graph. The key has been repositioned in Figure 14.8, and a
border has been drawn around it:

update (barley.plot,
key = list(
points = Rows (superpose.symbol, 1:2),
text = list(levels (barleySyear)),

columns = 2,
border = 1,

X = .5,

y = 1.02,
corner = c(.5,0)

))

The argument border= drawsaborder; it takes a number that specifiesthe
color in which the border should be drawn.

The repositioning uses two coordinate systems. The first describes lo-
cations in the rectangle that just encloses the panels of the display, but not
including the tick marks; the lower left corner of this panel rectangle has
coordinates (0,0), and the upper right corner has coordinates (1,1). A lo-
cation in the panel rectangle is specified by the components x and y. The
second coordinate system describes locations in the border rectangle of the
key, which is shown when the border is drawn, as in Figure 14.7; the lower
left corner of the key rectangle has coordinates (0, 0), and the upper right
corner has coordinates (1,1). A location in the border rectangle is specified
by the component corner, avector with two elements, the horizontal and
vertical coordinates. The key is positioned so that the locations specified by
the two coordinate systems are at the same place on the graph.
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Figure 14.8: Finer control of keys. adding a border and better spacing.
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Having two coordinate systems makes it far easier to get the key to a
desired location quickly, often on the first try.

Notice that we specified space= to be "top" in Figure 14.8. The
reason is this: As soon as we specify a value for any of the coordinate
arguments x, y, or corner, no default space is allocated in any margin
location unless we explicitly use the argument space=. In Figures 14.6
and 14.7, we did not use the coordinate arguments, so space= defaulted to
n tOp "

In Figure 14.9, space is alocated to the right.

update (barley.plot,
key = list(
points = Rows (superpose.symbol, 1:2),
text = list(levels(barleySyear)),
space = "right"

)
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In Figure 14.10 some changes have been made to Figure 14.9. A border
has been drawn, and the key is positioned by putting the upper left corner
of the border rectangle at the same vertical position as the top of the panel
rectangle and at a horizontal position slightly to the right of the right side of
the panel rectangle.

update (barley.plot,
key = list(
text = list(levels (barleyS$Syear)),
points = Rows (superpose.symbol, 1:2),

space = "right",
corner = c(0, 1),
x = 1.05,

y = 1,

border = 1

)
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So far we have seen that componentspoints and text can be used to
createitemsinkey entries. A third component, 1ines, drawslineitems. To
illustratethis, let usreturn to Figure 14.1, the first plot in this chapter, which
graphs Mileage against Weight for six types of vehicles. Figure 14.11
makes the plot again and adds two loess smooths with two different values
of the smoothing parameter span:

superpose.line <-

trellis.par.get ("superpose.line")
superpose.linescol [3:6] <- O
superpose.symbol <-

trellis.par.get ("superpose.symbol")

xyplot (Mileage =~ Weight,
data = fuel.frame,

groups = Type,
aspect = 1,
panel = function(x, y, ...){

panel.superpose(x, Yy, ...)

panel.loess (x, y, span = 1/2,
lwd=superpose.lineslwd[1],
lty=superpose.linesSlty[1],
col=superpose.linescol[1])

panel.loess(x, y, span = 1,
lwd=superpose.lineslwd[2],
lty=superpose.lineslty[2],
col = superpose.line$col[2])},

key = list(

transparent = T,

x = .95, y = .95,

corner = c(1,1),

lines = c(Rows (superpose.line, 1:6),

list(size = ¢(3,3,0,0,0,0))),
text = list(c("Span = 0.5", "Span = 1.0",
rep("", 4))),

points = Rows (superpose.symbol, 1:6),

text = list(levels(fuel.frameSType))

)
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Chapter 15

Data Structures

Trellis Graphics uses the S-PLUS formula language to specify the data for
plotting. This requires the data to be stored in datasets that work with
formulas. Roughly speaking, this means the data variables must be ei-
ther from a data frame or be vectors of the same length. (This is also
true of the S-PLUS modeling functions such as 1m().) But in SPLUS
there are many other data structures. So that Trellis functions will be
easy to use, three functions convert data structures of different kinds into
data frames — make.groups (), as.data.frame.array (), and
as.data.frame.ts ().
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15.1 make.groups()

Thefunctionmake . groups () takes several vectors and constructs a data
frame with two components. data and which. For example, consider
payoffs of the New Jersey Pick-It lottery from three time periods. The data
are stored as three vectors of values. Suppose we want to make box plotsto
compare the three distributions: We first convert the three vectors to a data
frame:

> lottery <- make.groups (lottery.payoff,
+ lottery2.payoff, lottery3.payoff)

> names (lottery)

[1] "data" "which"

> levels (lotterys$which)

[1] "lottery.payoff" "lottery2.payoff"
[3] "lottery3.payoff"

The data component is simply the combined numbers from all the
make .groups arguments. The which component is a factor with 3 lev-
els, giving the names of the original data vectors. Now we can make the box
plots, which are shown in Figure 15.1:

bwplot (which © data, data = lottery, aspect = 1)

15.2 as.data.frame.array()

Thefunctionas.data.frame.array () convertsarraysinto dataframes.
Consider theobject i ris, a3-way array of 50 measurements of 4 variables
for each of 3 varieties of irises:

> dim(iris)
[1] 50 4 3
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Figure 15.1: Data structures for making groups from multiple vectors.
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We can turn iris into a data frame in preparation for Trellis plotting by
using:

iris.df <- as.data.frame.array(iris, col.dims = 2)
names (iris.df) [5:6] <- c("flower", "variety")

The resulting data frame has what used to be its second dimension turned
into 4 columns:

> iris.df[1:5,]
Sepal L. Sepal W. Petal L. Petal W. flower variety

1 5.1 3.5 1.4 0.2 1 Setosa
2 4.9 3.0 1.4 0.2 2 Setosa
3 4.7 3.2 1.3 0.2 3 Setosa
4 4.6 3.1 1.5 0.2 4 Setosa
5 5.0 3.6 1.4 0.2 5 Setosa

Figure 15.2 is a scatterplot matrix of the data:

superpose.symbol <- trellis.par.get ("superpose.symbol")
for (i in 1:4)
iris.df[,i] <- jitter(iris.dfl[,i])

splom(“iris.df[,1:4],

key = list(
space = "top", columns = 3,
text = list(levels(iris.dfsvariety)),
points = Rows (superpose.symbol, 1:3)
),

varnames = c("Sepal Length\n(cm)",
"Sepal Width\n(cm)",
"Petal Length\n(cm)",
"Petal Width\n(cm)"),

groups = iris.df$variety,

panel = panel.superpose)

To prevent exact overlap of many of the plotting symbols, the data have been
jittered before plotting.



15.2. ASDATA.FRAME.ARRAY/() 161

Setosa  © Versicolor 0 Virginica o

15 20 25

Petal Width
(c m) 1.0 H

4 Petal Length 41
(cm) 3

2

- 4.0

- 35

Sepal Width
(cm)

L s Sepal Length ¢
(cm)

Figure 15.2: Converting arrays into data frames.
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15.3 as.data.frame.ts()

The function as.data.frame.ts () takes one or more time series as
arguments and produces a data frame with components named series,
which, time, and cycle. The series component isthedatafromall of
the time series combined into one long vector. The t ime component gives
the time associated with each of the points (measured in the same units as
the original series, e.g. years), and cycle gives the periodic component
of the time (e.g. 1=Jan, 2=Feb, ...). Finaly, the which component is a
factor that tells which of the time series the measurement came from. In
the following example there is only one series, hstart, but in genera
as.data.frame.ts cantake many arguments:

> as.data.frame.ts (hstart) [1:5,]
series which time cycle

1 81.9 hstart 1966.000 Jan
2 79.0 hstart 1966.083 Feb
3 122.4 hstart 1966.167 Mar
4 143.0 hstart 1966.250 Apr
5 133.9 hstart 1966.333 May

Figure 15.3 graphs housing starts for each month separately from 1966
to 1974:

xyplot (series ~ time|cycle,
data = as.data.frame.ts (hstart),
type = "b",
xlab = "Year",
ylab = "Housing Starts by Month")
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Housing Starts by Month
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Figure 15.3: Converting time series into data frames.
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Chapter 16

More on Aspect Ratio and Scales:
Prepanel Functions

Banking to 45° is an important display method built into Trellis Graphics
through the argument aspect=. And the ranges of scales on the panels
can be controlled by the arguments x1im= and y1 im=, or by the argument
scales=. Another argument, prepanel=, is a function that supplies
information for the banking and range cal culations.
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16.1 prepane=

Figure 16.1 isagraph of the ethanol data; NOx is graphed against E given
C and loess curves have been superposed.

xyplot (NOx ~ E | C, data = ethanol,

aspect = 0.5,

layout = c(1,5),

panel = function(x, y){
panel .xyplot (x, V)
panel.loess(x, y, span = 1/2, degree = 2)
}

)

There are now two things we would like to do with this plot, one involving
the aspect ratio and the other involving the ranges of the scales.

First, we have set the aspect ratio to 1/2 using aspect=. We could have
set aspect=to "xy" to carry out 45° banking of the line segments that
connect the points of the plot, that is, the graphed values of E and NOx. But
normally we do want to carry out banking of the raw dataif they are noisy;
rather we want to bank an underlying smooth pattern. In this example, we
want to bank using the line segments of the loess curves.

Second, in the top panel, the loess curve exceeds the maximum value
along the vertical scale and so is chopped off. It isimportant to understand
why this happened. The scales where chosed based on the values of E and
NOx. The loess curves were computed by the panel function after all of the
scaling had been carried out. We would like a way for the scaling to take
account of the values of the loess curve.
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The argument prepanel= alowsusto bank to 45° based on the loess
curves and to take the curves into account in computing the ranges of the
scales:

xyplot (NOx ~ E | C, data = ethanol,

prepanel = function(x, y)
prepanel.loess(x, vy, span = 1/2, degree = 2),
panel = function(x, y){

panel.xyplot (x, V)
panel.loess(x, y, span = 1/2, degree = 2)},
layout = c(1,5))

The resulting display is shown in Figure 16.2.

prepanel= takes a function and does panel-by-panel computations,
just like panel=, but these computations are carried out before the scales
and aspect ratio are determined and so, can be used in their determination.
Thereturned value of aprepanel functionisalist with prescribed component
names. These namesare showninthe prepanel functionprepanel . loess:

> prepanel.loess
function(x, vy, ...)

xlim <- range (x)

ylim <- range (y)

out <- loess.smooth(x, vy, ...)

X <- outsx

y <- outsSy

list (xlim = range(x, xlim), ylim = range(y, ylim),
dx = diff(x), dy = diff (y))

The component values x1 im and y1 im determine ranges for the scales just
as they do when they are given as arguments of a general display function.
The values of dx and dy are the horizontal and vertical changes of the line
segmentsthat are to be banked to 45°.
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For Figure 16.2, prepanel . loess computesthe smoothsfor all pan-
els, computes values of x1im and y1im that insure that the curve will be
included in the ranges of the scales, and then passes along the changes of
the line segments that will make up the plotted curve. Any of the compo-
nent names can be missing from the list; if either dx or dy is missing, the
other must be as well. When dx and dy are present, they give the infor-
mation needed for banking to 45° as well as the instruction to do so; thus
aspect= should not be used as an argument when dx and dy are present.
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More on Multipanel Conditioning

The multipanel conditioning of Trellis Graphics has three more arguments
that assist in the control of the layout, visual design, and labeling. between=
puts space between adjacent columns or adjacent rows. skip= alows a
panel position to be skipped when packets are sent to the panels for draw-
ing. page= can add page numbers, text, or even graphics to each page of a
multipage Trellis display.

17.1 between=

Figures17.1 and 17.2 graph the barley data. In thistwo-page Trellisdisplay,
yield is plotted against site given variety and year.
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Figures 17.1 and 17.2 were produced by:

barley.plot <- dotplot(site ~ yield | variety*year,
data = barley, aspect = "xy", layout = c(2,5 2))
barley.plot

The layout — 2 columns, 5 rows, and 2 pages — has put the measurements
for 1931 on thefirst page and for 1932 on the second page. The display has
been saved inbarley.plot for future editing.

In Figure 17.3, the panels of Figures 17.1 and 17.2 have been squeezed
into one page simply by changing layout= from (2,5,2) to (2,10,1):

barley.plot <- update(barley.plot,
layout = c(2, 10, 1))
barley.plot

Rows 1 to 5 (starting from the bottom) have the 1932 data and rows 6 to 10
have the 1931 data. The change in the value of the year variable from rows
5to 6isindicated by the text of the strip label, but a stronger indication of a
change would occur if there was a break in the display between rows 5 and
6.
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The argument between= can be used to insert space between adjacent
rows or adjacent columns of a Trellis display. This is illustrated in Fig-
ure 17.4, which puts space between rows 5 and 6 of the barley display:

barley.plot <- update(barley.plot,
between = list(y = ¢(0,0,0,0,1,0,0,0,0)))
barley.plot

The argument between= isalist with components x and y; either can be
missing. x isavector whose length isequal to the number of columns minus
one; the values are the amounts of space, measured in character heights, to
be inserted between columns. Similarly, y specifies the amounts of space
between rows.

17.2 skip=

Figures 17.5 and 17.6 are adisplay of variables in market . survey, a
data frame. Each panel has box plots of usage for six age groups. The
conditioning variables are, first, seven levels of income and, second, two
long distance carriers.
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Figures17.5and 17.6 were produced by:

market.plot <- bwplot (

age ~ log(l+usage) | income * pick,
data = market.survey,
strip = function(...)
strip.default (..., strip.names = T),

skip = ¢(F,F,F,F,F,F,F,T),
layout = c(2,4,2)
)

market.plot

Notice that the layout has eight panels per page but there are seven plots.
On both pages, the last panel is skipped. The skipping has been done
because the conditioning variable income has 7 levels. The argument
skip=, which takes alogical vector, controls skipping. Each element says
whether or not to skip a panel. For Figures 17.5 and 17.6, skip is given
c(F,F,F,F,F,F,F,T).Onthefirst page, thefirst seven panelsarefilled
and the eighth is skipped. Since we ran out of elements of skip= just as
we completed the first page, we went back to the beginning of skip= and
to determine the skipping for the second page.

17.3 page=

The argument page= can add page numbers, text, or graphics to each page
of a multipage Trellis display. page= should be a function of a single
argument n, the page number; the function tells what to draw on pagen. In
Figures17.7 and 17.8, page= adds page numbers:

update (market.plot,

page = function(n)
text(x = .75, y = .95,
paste (" page", n), adj = .5))

text (), an S-PLUS core graphics function, uses a coordinate system that
isthe same asthe panel rectangle coordinate system for the argument key=;
(0,0) isthe lower left corner and (1,1) isthe upper left corner.
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Chapter 18

M ore Examples

This chapter contains a collection of examples. The displays and the S
PLUS expressions that produce them are given on facing pages. Much can
be learned from these examples, which in many cases show advanced usages
of Trellis Graphics.

The examples aso show how the two displays of chapter 1 are drawn.

The examples use datasets in S-PLUS databases. Any computation that
needs to be performed before plotting is given as part of the example. In
other words, you can run these examplesin S-PLUS.
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attach(galaxy)

grid <- expand.grid/(
east.west = seqg(-25, 25, by = 2),
north.south = seq( -45, 45, by = 3))

fit <- c(predict (
loess (velocity 7 east.west * north.south,
span = 0.25, degree = 2, normalize = F,
family = "symmetric"), grid))

detach ()

wireframe (fit 7 grid$east.west * grid$north.south,
screen = list(z = 200, x = -60, v = 0),
lwd = 1.5,
par.box = list(lwd = 3, lty = 1, col = 1),
colorkey = list(skip = c(F,T), tick.number=17),
drape = T,
distance = 0.3,

xlab = list ("East-West", cex = 1),

ylab list ("South-North", cex = 1),

zlab = list ("Velocity", cex = 1))
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attach (environmental)

ozo.m <- loess(
(ozone”™ (1/3)) wind * temperature * radiation,
parametric = c("radiation", "wind"), span = 1,
degree = 2
)

w.marginal <- seqg(min(wind), max(wind),
length = 50)

t.marginal <- seqg(min (temperature),

max (temperature), length = 50)
r.marginal <- seqg(min(radiation), max(radiation),
length = 4)

wtr.marginal <- list(
wind = w.marginal,
temperature = t.marginal,

radiation = r.marginal)
grid <- expand.grid(wtr.marginal)
grid[, "fit"] <- c(predict(ozo.m, grid))
detach ()

levelplot (fit ~ wind * temperature | radiation,
data = grid,
cuts = 11,
pretty = T,
contour = T,
labels = F,
lwd = 6,
col = 1,
scale = list(cex = 0.7),
xlab = "Wind Speed (mph)",
yvlab = "Temperature (F)")
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dotplot (variety ~ yield | site,
data = barley,
groups = year,
panel = function(x, y, ...) {
dot.line <- trellis.par.get("dot.line")
abline(h = unique(y), 1lwd dot.lineSlwd,
lty = dot.lineslty, col dot.lineScol)
panel.superpose(x, Yy, ...)

b

scale = list(y = list(cex = .7)),
layout = c(1, 6),
par.strip = list(cex = .75),
aspect = .5,
xlab = list("Barley Yield (bushels/acre)",
cex = 1),
key = list(
y = 1.02,
points = Rows (trellis.par.get ("superpose.symbol"),
1:2),

text = list(levels (barleyS$Syear)),
columns = 2

)
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attach (environmental)
Temp <- equal.count (temperature, 4, 1/2)
Wind <- equal.count (wind, 4, 1/2)

xyplot ( (ozone™ (1/3)) radiation | Temp * Wind,

prepanel = function(x, V)
prepanel.loess(x, y, span = 1),

panel = function(x, y){
panel.grid(h = 2, v = 2, lwd = .5)
panel .xyplot(x, y, cex = 0.6)
panel.loess(x, vy, span = 1)

b

par.strip = list(cex = .75),
aspect = 2,
xlab = list("Solar Radiation (langleys)",

cex = 1),
ylab = list ("Cube Root Ozone (cube root ppb)",
cex = 1)

)

detach ()
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iris.df <- as.data.frame.array(iris, col.dims = 2)
names (iris.df) [5:6] <- c("flower", "variety")
for (i in 1:4)

iris.df[,i] <- jitter(iris.dfl[,il)

splom( ~ iris.df[,1:4] | iris.df[,"variety"],

cex = .2,

varnames = c("sSL", "Sw", "PL", "PW"),

page = function(...)

text (seqg(.6, .8, length = 4),

seqg(.9, .6, length = 4),
c ("Three", "Varieties", "of", "Iris"),
adj = 0, cex = 1.5
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new.solder <- solder
for (i in 1:5)
new.sgsolder[,i] <- reorder.factor (new.solder|[,i],
new.solder[,6])

dotplot (
PadType ~ sqgrt(skips) | Panel*Opening*Solder*Mask,
data = new.solder,
strip = function(...)

strip.default (..., strip.names = T),
between = list(y = ¢(0,0,1,0,0)),
layout = c¢(3,6,5))
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Figure 18.9: Dotplot of aresponse in afactorial experiment (page 4).
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Figure 18.10: Dotplot of aresponsein afactorial experiment (page 5).
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attach (barley)

morris3l <- yield[(site=="Morris") &(year=="1931")]
morris32 <- yield[(site=="Morrisg") & (year=="1932")]
new.yield <- yield

new.yield[(site=="Morris") &(year=="1931")] <- morris32
new.yield[(site=="Morris") & (year=="1932")] <- morris3l
wt <- rep(l, length(yield))

for(i in 1:10){
barley.lm <- Im(new.yield variety+year*site,
weights = wt)
wt <- wt.bisquare
barley.lmSres/median (abs (barley.lmSres)

detach ()

rfs(barley.1lm,

scale = list(cex = .8),

par.strip.text = list(cex = 1),

aspect = 2,

ylab = list("Yield (bushels/acre)", cex = 1.25),

xlab = list("f-value", cex = 1.25))
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Figure 18.11: Rfs plot.
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wolfer <- window(sunspots, end = c(1924,12))
wolfer <- ts(tapply(wolfer, trunc(time (wolfer)),
mean) ,
start = 1749)

sunl.0 <- xyplot (wolfer“time (wolfer),

type = nlmn ,

aspect = 1.0,

ylab = nn

xlab = "Sunspot Number vs. Year")

sunxy <- xyplot (wolfer“time (wolfer),

type = nlnw,

aspect = "xy",

ylab = nn,

xlab = "Sunspot Number vs. Year",

ylim = range (wolfer)+c(-1,1)*diff (range (wolfer))
print (sunl.0, position = c(0 25 1,1), more = T)

print (sunxy, position = c (0, ,-3))

*.2)
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Figure 18.12: Multipletrellis plots on one page.
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attach(galaxy)

grid <- expand.grid(
east.west = seqg(-25, 25, by = 2),
north.south = seq( -45, 45, by = 3))

fit <- c(predict(loess

velocity © east.west * north.south,

span = 0.25, degree = 2, normalize = F,
family = "symmetric"), grid))

detach ()

angle <- c¢(22.5, 67.5, 112.5, 337.5, 157.5,
292.5, 247.5, 202.5)
Angle <- shingle(rep(angle, rep(length(fit), 8)),

angle)
wireframe( rep(fit, 8) 7 rep(gridSeast.west, 8) *
rep (grid$ north.south, 8) | Angle,
groups = Angle,
panel = function(x, y, subscripts, z, groups,...)({

w <- groups [subscripts] [1]
panel .wireframe (x, y, subscripts, z,

screen = list(z = w, x = -60, y = 0), ...)
|

strip = FALSE,

skip = ¢(F, F, F, F, T, F, F, F, F),
layout = c(3,3),

distance = .3,

xlab = "E-W",

ylab = "S-N",

zlab = "v"

)
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Figure 18.13: Multipanel wireframe plot.



